Mathematical and Physical Journal
for High Schools
Issued by the MATFUND Foundation
 Already signed up? New to KöMaL?

# Problem B. 4776. (February 2016)

B. 4776. Let $\displaystyle \mathcal{O}$ be a regular octahedron. How many different axes of rotation are there such that $\displaystyle \mathcal{O}$ is mapped onto itself by a rotation through an angle of at most $\displaystyle 180^{\circ}$?

(6 pont)

Deadline expired on March 10, 2016.

### Statistics:

 77 students sent a solution. 6 points: Baran Zsuzsanna, Bodolai Előd, Bukva Balázs, Busa 423 Máté, Czirkos Angéla, Döbröntei Dávid Bence, Gáspár Attila, Glasznova Maja, Hansel Soma, Imolay András, Kiss Gergely, Klász Viktória, Kondákor Márk, Kovács 246 Benedek, Kőrösi Ákos, Lajkó Kálmán, Lakatos Ádám, Matolcsi Dávid, Molnár-Sáska Zoltán, Nagy Dávid Paszkál, Nagy Kartal, Schrettner Bálint, Schrettner Jakab, Simon Dániel Gábor, Szabó 417 Dávid, Szakály Marcell, Szemerédi Levente, Tóth Viktor, Vári-Kakas Andor. 5 points: Borbényi Márton, Cseh Kristóf, Gál Hanna, Harsányi Benedek, Kerekes Anna, Kosztolányi Kata, Kovács 162 Viktória, Németh 123 Balázs, Nguyen Viet Hung, Radnai Bálint, Sal Kristóf, Souly Alexandra, Tiszay Ádám, Umann Péter Andor, Vágó Ákos, Váli Benedek. 4 points: 8 students. 3 points: 8 students. 2 points: 13 students. 1 point: 1 student. 0 point: 1 student. Unfair, not evaluated: 1 solutions.

Problems in Mathematics of KöMaL, February 2016