KöMaL - Középiskolai Matematikai és Fizikai Lapok
English Információ A lap Pontverseny Cikkekről Távoktatás Hírek Fórum Internetes Tesztverseny
Játékszabályok
Aktuális feladatok
A verseny állása
Regisztráció

 

Rendelje meg a KöMaL-t!

Támogatóink:

tehetseg.hu

Ericsson

Google

Emberi Erőforrások Minisztériuma

Emberi Erőforrás Támogatáskezelő

Oktatáskutató és Fejlesztő Intézet

ELTE

Reklám:

VersenyVizsga portál

Kísérletek.hu

Matematika oktatási portál

A korábban kitűzött feladatok és megoldásuk

  Hírek, hirdetések    Játekszabályok    Az aktuális feladatok    Eredmények    A korábbi feladatok    Regisztráció  

Ön még nem jelentkezett be.
Név:
Jelszó:
MatematikaFizikaInformatika
2011. május 23. - 2011. június 23. 1-6. osztályosok
7-8. osztályosok
9-10. osztályosok
11-12. osztályosok
1-8. osztályosok
9-10. osztályosok
11-12. osztályosok
1-8. osztályosok
9-10. osztályosok
11-12. osztályosok
2011. április 18. - 2011. május 19. 1-6. osztályosok
7-8. osztályosok
9-10. osztályosok
11-12. osztályosok
1-8. osztályosok
9-10. osztályosok
11-12. osztályosok
1-8. osztályosok
9-10. osztályosok
11-12. osztályosok
2011. március 16. - 2011. április 16. 1-6. osztályosok
7-8. osztályosok
9-10. osztályosok
11-12. osztályosok
1-8. osztályosok
9-10. osztályosok
11-12. osztályosok
1-8. osztályosok
9-10. osztályosok
11-12. osztályosok
2011. február 7. - 2011. március 10. 1-6. osztályosok
7-8. osztályosok
9-10. osztályosok
11-12. osztályosok
1-8. osztályosok
9-10. osztályosok
11-12. osztályosok
1-8. osztályosok
9-10. osztályosok
11-12. osztályosok
2011. január 3. - 2011. február 3. 1-6. osztályosok
7-8. osztályosok
9-10. osztályosok
11-12. osztályosok
1-8. osztályosok
9-10. osztályosok
11-12. osztályosok
1-8. osztályosok
9-10. osztályosok
11-12. osztályosok
2010. november 29. - 2010. december 30. 1-6. osztályosok
7-8. osztályosok
9-10. osztályosok
11-12. osztályosok
1-8. osztályosok
9-10. osztályosok
11-12. osztályosok
1-8. osztályosok
9-10. osztályosok
11-12. osztályosok
2010. október 25. - 2010. november 25. 1-6. osztályosok
7-8. osztályosok
9-10. osztályosok
11-12. osztályosok
1-8. osztályosok
9-10. osztályosok
11-12. osztályosok
1-8. osztályosok
9-10. osztályosok
11-12. osztályosok
2010. május 31. - 2010. július 1. 1-6. osztályosok
7-8. osztályosok
9-10. osztályosok
11-12. osztályosok
1-8. osztályosok
9-10. osztályosok
11-12. osztályosok
1-8. osztályosok
9-10. osztályosok
11-12. osztályosok
2010. április 26. - 2010. május 27. 1-6. osztályosok
7-8. osztályosok
9-10. osztályosok
11-12. osztályosok
1-8. osztályosok
9-10. osztályosok
11-12. osztályosok
1-8. osztályosok
9-10. osztályosok
11-12. osztályosok
2010. március 22. - 2010. április 22. 1-6. osztályosok
7-8. osztályosok
9-10. osztályosok
11-12. osztályosok
1-8. osztályosok
9-10. osztályosok
11-12. osztályosok
1-8. osztályosok
9-10. osztályosok
11-12. osztályosok
2010. február 15. - 2010. március 18. 1-6. osztályosok
7-8. osztályosok
9-10. osztályosok
11-12. osztályosok
1-8. osztályosok
9-10. osztályosok
11-12. osztályosok
1-8. osztályosok
9-10. osztályosok
11-12. osztályosok
2010. január 11. - 2010. február 11. 1-6. osztályosok
7-8. osztályosok
9-10. osztályosok
11-12. osztályosok
1-8. osztályosok
9-10. osztályosok
11-12. osztályosok
1-8. osztályosok
9-10. osztályosok
11-12. osztályosok
2009. november 30. - 2009. december 31. 1-6. osztályosok
7-8. osztályosok
9-10. osztályosok
11-12. osztályosok
1-8. osztályosok
9-10. osztályosok
11-12. osztályosok
1-8. osztályosok
9-10. osztályosok
11-12. osztályosok
2009. október 19. - 2009. november 19. 1-6. osztályosok
7-8. osztályosok
9-10. osztályosok
11-12. osztályosok
1-8. osztályosok
9-10. osztályosok
11-12. osztályosok
1-8. osztályosok
9-10. osztályosok
11-12. osztályosok
2009. június 8. - 2009. július 9. 1-6. osztályosok
7-8. osztályosok
9-10. osztályosok
11-12. osztályosok
1-8. osztályosok
9-10. osztályosok
11-12. osztályosok
1-8. osztályosok
9-10. osztályosok
11-12. osztályosok
2009. április 27. - 2009. május 28. 1-6. osztályosok
7-8. osztályosok
9-10. osztályosok
11-12. osztályosok
1-8. osztályosok
9-10. osztályosok
11-12. osztályosok
1-8. osztályosok
9-10. osztályosok
11-12. osztályosok
2009. március 25. - 2009. április 25. 1-6. osztályosok
7-8. osztályosok
9-10. osztályosok
11-12. osztályosok
1-8. osztályosok
9-10. osztályosok
11-12. osztályosok
1-8. osztályosok
9-10. osztályosok
11-12. osztályosok
2009. február 16. - 2009. március 19. 1-6. osztályosok
7-8. osztályosok
9-10. osztályosok
11-12. osztályosok
1-8. osztályosok
9-10. osztályosok
11-12. osztályosok
1-8. osztályosok
9-10. osztályosok
11-12. osztályosok
2009. január 7. - 2009. február 6. 1-6. osztályosok
7-8. osztályosok
9-10. osztályosok
11-12. osztályosok
1-8. osztályosok
9-10. osztályosok
11-12. osztályosok
1-8. osztályosok
9-10. osztályosok
11-12. osztályosok
2008. december 1. - 2009. január 1. 1-6. osztályosok
7-8. osztályosok
9-10. osztályosok
11-12. osztályosok
1-8. osztályosok
9-10. osztályosok
11-12. osztályosok
1-8. osztályosok
9-10. osztályosok
11-12. osztályosok
2008. október 20. - 2008. november 19. 1-6. osztályosok
7-8. osztályosok
9-10. osztályosok
11-12. osztályosok
1-8. osztályosok
9-10. osztályosok
11-12. osztályosok
1-8. osztályosok
9-10. osztályosok
11-12. osztályosok
2008. május 21. - 2008. június 21. 1-6. osztályosok
7-8. osztályosok
9-10. osztályosok
11-12. osztályosok
1-8. osztályosok
9-10. osztályosok
11-12. osztályosok
1-8. osztályosok
9-10. osztályosok
11-12. osztályosok
2008. április 14. - 2008. május 15. 1-6. osztályosok
7-8. osztályosok
9-10. osztályosok
11-12. osztályosok
1-8. osztályosok
9-10. osztályosok
11-12. osztályosok
1-8. osztályosok
9-10. osztályosok
11-12. osztályosok
2008. március 10. - 2008. április 10. 1-6. osztályosok
7-8. osztályosok
9-10. osztályosok
11-12. osztályosok
1-8. osztályosok
9-10. osztályosok
11-12. osztályosok
1-8. osztályosok
9-10. osztályosok
11-12. osztályosok
2008. február 4. - 2008. március 5. 1-6. osztályosok
7-8. osztályosok
9-10. osztályosok
11-12. osztályosok
1-8. osztályosok
9-10. osztályosok
11-12. osztályosok
1-8. osztályosok
9-10. osztályosok
11-12. osztályosok
2008. január 3. - 2008. február 1. 1-6. osztályosok
7-8. osztályosok
9-10. osztályosok
11-12. osztályosok
1-8. osztályosok
9-10. osztályosok
11-12. osztályosok
1-8. osztályosok
9-10. osztályosok
11-12. osztályosok
2007. november 16. - 2007. december 16. 1-6. osztályosok
7-8. osztályosok
9-10. osztályosok
11-12. osztályosok
1-8. osztályosok
9-10. osztályosok
11-12. osztályosok
1-8. osztályosok
9-10. osztályosok
11-12. osztályosok
2007. október 15. - 2007. november 13. 1-6. osztályosok
7-8. osztályosok
9-10. osztályosok
11-12. osztályosok
1-8. osztályosok
9-10. osztályosok
11-12. osztályosok
1-8. osztályosok
9-10. osztályosok
11-12. osztályosok
2007. május 17. - 2007. június 15. 1-6. osztályosok
7-8. osztályosok
9-10. osztályosok
11-12. osztályosok
1-8. osztályosok
9-10. osztályosok
11-12. osztályosok
1-8. osztályosok
9-10. osztályosok
11-12. osztályosok
2007. április 16. - 2007. május 15. 1-6. osztályosok
7-8. osztályosok
9-10. osztályosok
11-12. osztályosok
1-8. osztályosok
9-10. osztályosok
11-12. osztályosok
1-8. osztályosok
9-10. osztályosok
11-12. osztályosok
2007. március 8. - 2007. április 6. 1-6. osztályosok
7-8. osztályosok
9-10. osztályosok
11-12. osztályosok
1-8. osztályosok
9-10. osztályosok
11-12. osztályosok
1-8. osztályosok
9-10. osztályosok
11-12. osztályosok
2007. február 6. - 2007. március 8. 1-6. osztályosok
7-8. osztályosok
9-10. osztályosok
11-12. osztályosok
1-8. osztályosok
9-10. osztályosok
11-12. osztályosok
1-8. osztályosok
9-10. osztályosok
11-12. osztályosok
2007. január 4. - 2007. február 3. 1-6. osztályosok
7-8. osztályosok
9-10. osztályosok
11-12. osztályosok
1-8. osztályosok
9-10. osztályosok
11-12. osztályosok
1-8. osztályosok
9-10. osztályosok
11-12. osztályosok
2006. november 30. - 2006. december 30. 1-6. osztályosok
7-8. osztályosok
9-10. osztályosok
11-12. osztályosok
1-8. osztályosok
9-10. osztályosok
11-12. osztályosok
1-8. osztályosok
9-10. osztályosok
11-12. osztályosok
2006. október 24. - 2006. november 23. 1-6. osztályosok
7-8. osztályosok
9-10. osztályosok
11-12. osztályosok
1-8. osztályosok
9-10. osztályosok
11-12. osztályosok
1-8. osztályosok
9-10. osztályosok
11-12. osztályosok

Informatika feladatok, 11-12 osztály

1. feladat. Hol alkalmaznak elterjedten asszociatív memóriákat?
  (A) processzorok gyorsítótáraként
  (B) mágneslemezes tárolók gyorsítótáraként
  (C) PC alaplapon a BIOS paraméterek tárolására
  (D) megjelenítő kártyákban a képpontok tárolására
  (E) egyikben sem

Helyes válasz: a

Indoklás: Az asszociatív memóriákban tárolt értékeket nem a memóriacella címe, hanem a tárolt adatra jellemző valamilyen kulcs alapán lehet elérni.

Processzor cache-ként kiválóan alkalmazható: a tárolt adat a központi memóriában található érték, a kulcs pedig az adat központi tárbeli címe.


2. feladat. Milyen eredményt kapunk, ha az ABCDh hexadecimális számot maradékosan osztjuk nyolccal?
  (A) 10101011110011012
  (B) 10101010110012
  (C) 11113214
  (D) 145718
  (E) 157Ah

Helyes válasz: c

Indoklás: Az ABCD hexadecimális szám kettes számrendszerbeli alakja 10101011110011012. Nyolccal való maradékos osztáskor a számjegyek három jeggyel jobbra lépnek a kisebb helyiértékek felé - az utolsó három jegy a maradék. Az eredmény tehát 10101011110012, ami 4-es számrendszerben 11113214.


3. feladat. Az alábbi algoritmus segítségével átrendezzük az 5x5-ös t táblázat elemeit (n=5). A t változó a táblázatot tartalmazza, míg a csere() függvény annak két elemét cseréli ki.

Eljárás B2D
Ciklus i := 1-től n-ig
Ciklus j := 1-től n-1-ig
Ciklus k := 1-től n-ig
Ciklus l := -1-től +1-ig
Ha (l+k>=1) és (l+k<=n) és (t[k,j]>t[l+k,j+1]) akkor
Csere( k,j,l+k,j+1 )
Ciklus vége
Ciklus vége
Ciklus vége
Ciklus vége
Eljárás vége

A táblázat tartalma kezdetben:

Milyen szám áll a táblázat közepén az algoritmus lefutása után?
  (A) 1
  (B) 2
  (C) 3
  (D) 5
  (E) 6

Helyes válasz: c

Indoklás: Az algoritmus egy mátrixokra átírt "buborékos rendezés": az alsóbb sorokban lévő elemet a fölötte és balra lévő; fölötte; illetve fölötte és jobbra lévő elemere cseréli, ha az kisebb. Az így kialakuló táblázat a következő:


4. feladat. Valamely pozitív egész számból "összevonással" képezhetünk egyjegyű pozitív egész számot. A módszer lényege, hogy az eredeti szám számjegyeit összeadjuk; ha ez egyjegyű, akkor készen vagyunk, ha nem, akkor a kapott szám jegyeit is összeadjuk, stb. Így például a 104-ből 5 lesz, a 269-ből 8 lesz, hiszen 269\rightarrow2+6+9=17\rightarrow1+7=8.

Az 1 és 2007 közötti prímszámok mindegyikét összevonva melyik egyjegyű számból fordul elő a legtöbb?
  (A) 2
  (B) 4
  (C) 5
  (D) 7
  (E) 8

Helyes válasz: c

Indoklás: Készítsünk programot, amely a feladatban szereplő prímeket összevonja, majd a kapott eredményeket egy 1-től 9-ig terjedő tömbbe gyűjti. A megoldást a kövektező C++ program szolgáltatja: TV273.CPP. A legtöbbet előforduló egyjegyű szám az 5-ös.


5. feladat. Rendezzük át a 6x6-os sakktábla mezőit úgy, hogy ne legyen két azonos sora, sem két azonos oszlopa, és minden sorban, valamint minden oszlopban azonos számú sötét és világos mező legyen.

Hány ilyen átrendezés lehetséges? (A táblát nem forgatjuk el. Minden olyan átrendezés különböző, ahol valamely mező színezése eltér.)
  (A) 236700
  (B) 237600
  (C) 326700
  (D) 327600
  (E) egyik sem

Helyes válasz: e

Indoklás: A megoldást adó Delphi program (tv274.dpr) logikája a következő:

A 6x6-os táblán hat sorban egyenként hat-hat mező van, minden egyes sorban három világos és három sötét.

Keressük meg egy sor mezőinek azokat az átrendezéseit, amelyekben három sötét és három világos mező van. Ezekből \frac{6!}{3! \cdot 3!}=20 darabot találunk. A program első részében (SVKeres) ezeket a sorokat állítja elő, az sv[] tömbbe helyezi őket, és svdb változóban tárolja a számukat.

Ezután visszalépéses kereséssel az osszes olyan sor hatost kivalasztja, ahol nincs két egyező. A így kiválasztott sorokra ellenőrizzük, hogy minden oszlopban azonos sötét és világos mező van-e, és nincs-e két azonos oszlop a táblán.

Az eredmény 194400 különböző elrendezés (tv274.zip ).

Támogatóink:   Ericsson   Google   Szerencsejáték Zrt.   Emberi Erőforrások Minisztériuma   Emberi Erőforrás Támogatáskezelő   Oktatáskutató és Fejlesztő Intézet   ELTE   Nemzeti Tehetség Program   Nemzeti
Kulturális Alap