Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?

Fórum: Fizikások válaszoljanak

  [1]    [2]    [3]    [4]    [5]    [6]    [7]  

Szeretnél hozzászólni? Jelentkezz be.
[1388] marcius82022-09-20 18:32:21

Játékboltokban olykor van olyan kép, amit ha balról nézek, akkor ezt mutatja, ha jobbról nézek, azt mutatja. Ezt a jelenséget mutatja a színváltós rubik-kocka is, hogy a kis négyzetek attól függően, hogy honnan nézem őket, olyan színűek. (aki nem hiszi, hogy van színváltós rubik-kocka, írja be a keresőbe, és videón megnézheti.) Mi ennek a jelenségnek a neve, és hogyan működik az ilyen kép vagy színváltós papír, és hogy lehet ilyen színváltós papírt csinálni? Mindenki segítségét előre is köszönöm.

[1387] Sinobi2022-04-01 16:35:46

Fényforrás körüli egyenletes körmozgás esetén az érzékelt frekvenciát éppen az idődilatáció képletével kapod meg.

Hiszen ha T ideig áll fenn az állapot, akkor az érzékelt periódusok száma  megegyezik a fényforrásnál és a megfigyelőnél, így csak az általuk érzékelt eltelt idő számít. (Ha akarjuk, akkor a megfigyelő és a fényforrásnál álló akár találkozhatnak is hogy információt cseréljenek, de ha T elég nagy, akkor az ehhez szükséges idő és a közben eltelő periódusok száma elhanyagolható az össz időhöz és periódusok számához képest.)

0.8 c-vel halad a megfigyelő (tök mindegy mekkora körpályán), a hozzá tartozó Lorentz faktor 1.666, így 400/0.6=666.66 TeraHertz frekvenciát érzékel a megfigyelő.

Előzmény: [1386] marcius8, 2022-03-27 22:17:11
[1386] marcius82022-03-27 22:17:11

Mennyinek érzékeli vákuumban a megfigyelő a fényforrás által kisugárzott 400 TeraHertz frekvenciájú fény frekvenciáját, ha a megfigyelő a fényforrás körül egyenletes körmozgást végez 500 méter sugarú körpályán 240 ezer km/sec állandó nagyságú sebességgel? A vákuumbeli fénysebesség 300 ezer km/sec.

Mennyinek érzékeli vákuumban a megfigyelő a fényforrás által kisugárzott 400 TeraHertz frekvenciájú fény frekvenciáját, ha a fényforrás a megfigyelő körül egyenletes körmozgást végez 500 méter sugarú körpályán 240 ezer km/sec állandó nagyságú sebességgel? A vákuumbeli fénysebesség 300 ezer km/sec.

Előre is köszönöm mindenki segítségét, maradok tisztelettel: Bertalan Zoltán.

[1385] Fálesz Mihály2022-02-12 11:41:16

Az, hogy miért változik a képlet, világos: két különböző testből áll a rendszer, ezek nem ugyanúgy vannak felfüggesztve stb.

Az, hogy hogyan változik a képlet, sokkal összetettebb. Egy precíz megoldáshoz a rugóban haladó longitudinális hullámokat is figyelembe kell venni, tehát ki kell számolni a rendszer sajátfrekvenciáit. Nem egyetlen periódusidőről van szó, hanem végtelen sok féle periodikus rezgés szuperpozíciójáról.

***

Egy lehetséges első közelítő próbálkozás az, hogy a rugó tömegét pontszerű testtel helyettesítjük a nyújtatlan rugó felénél. Mondjuk a rugó tömege \(\displaystyle m\), a ráakasztott test tömege \(\displaystyle M\); a rugó két felének a megnyúlása \(\displaystyle f(t)\), illetve \(\displaystyle g(t)\), a fél rugók rugóállandója \(\displaystyle 2D\). A két test mozgását a következő egyenletek írják le:

\(\displaystyle m\cdot f'' = -2D\cdot (f-g); \qquad M\cdot (f+g)'' = -2D\cdot g. \)

Ha a sajátrezgést \(\displaystyle f(t)=A\sin(\omega(t-t_0))\), \(\displaystyle g(t)=B\sin(\omega(t-t_0))\) alakban keressük, akkor \(\displaystyle f''=-A\omega^2\sin(\omega(t-t_0))\) és \(\displaystyle g''=-B\omega^2\sin(\omega(t-t_0))\), ezért

\(\displaystyle mA\omega^2 =2D(A-B), \qquad M(A+B)\omega^2 = 2DB \)

Megoldva, kétféle körfrekvencia lehetséges:

\(\displaystyle \omega^2 = \frac{4D}{2M+m\pm\sqrt{4M^2+m^2}} . \)

(Félre: semmi garancia, hogy nem számoltam el, de azért megnyugtató, hogy \(\displaystyle m=0\) esetén \(\displaystyle \omega^2=\dfrac{D}{M}\), \(\displaystyle M=0\) esetén pedig \(\displaystyle \omega^2=\dfrac{2D}{m}\).)

Tehát a rendszer mozgása egy \(\displaystyle 2\pi\sqrt{\dfrac{2M+m+\sqrt{4M^2+m^2}}{4D}}\) és egy \(\displaystyle 2\pi\sqrt{\dfrac{2M+m-\sqrt{4M^2+m^2}}{4D}}\) periódusidejű rezgés összege.

Előzmény: [1382] marcius8, 2022-02-10 20:24:48
[1384] Berko Erzsebet2022-02-12 09:17:53

A képletben lesz egy 0,5 körüli tényező. Az m a rugó tömegét jelöli.

Előzmény: [1381] marcius8, 2021-12-19 14:40:38
[1383] Berko Erzsebet2022-02-11 12:18:01

Szia! Lehet, hogy segít a lépcsőjáró rugó problémája. Kereshető neten: Vigh Máté, Furfangos fejtörők fizikából...

Előzmény: [1382] marcius8, 2022-02-10 20:24:48
[1382] marcius82022-02-10 20:24:48

Ismert, hogy a \(\displaystyle D\) rugóállandójú rugóhoz rögzített \(\displaystyle m\) tömegű test rezgésének periódusideje \(\displaystyle T=2\pi*\sqrt{\frac{m}{D}}\). Miért és hogyan módosul ez a képlet, ha a rugó tömegét is figyelembe vesszük? Előre is köszönöm mindenki segítségét.

[1381] marcius82021-12-19 14:40:38

Két, egymástól \(\displaystyle 3*10^{10}\) \(\displaystyle méter\) távol levő test tömege \(\displaystyle 9*10^{25} \) \(\displaystyle kg\) illetve \(\displaystyle 6*10^{25} \) \(\displaystyle kg\). Mekkora gravitációs erővel hat egymásra ez a két test?

A gravitációs állandó az egyszerűbb számolás miatt legyen \(\displaystyle \gamma=\frac{2}{3}*10^{-10}\) \(\displaystyle \frac{méter^3}{kg*sec^2}\).

Eddig még semmi extra nincs ebben a feladatban. De mi a válasz, ha 240000 km/sec sebességgel közeledünk/távolodunk a testekhez/testektől, a két testet összekötő egyenes mentén, illetve a két testet összekötő szakasz felezőmerőleges egyenese mentén, ekkor mi mennyinek látjuk a két test közötti gravitációs erőhatást?

[1380] Lpont2021-07-19 09:02:48

Fel lehetne éleszteni, pl. a lejárt határidejű KÖMAL feladatok topicban.

Az A jelű feladatok megoldásai csak nagyon ritkán kerülnek közlésre, sokunk tudását meghaladja azok nehézségi foka.

A fórumon viszont jó páran vagytok/voltatok - az előző évek, évtizedek alapján - , akiknek nem jelentenek nagy kihívást ezek a feladatok.

Egy-egy ötlet, vázlat, netán teljes megoldás közlése lendíthetne a fórumon.

Előzmény: [1378] Zs76, 2021-06-21 20:09:29
[1379] Róbert Gida2021-07-17 23:55:04

Jól kihalt a fórum, ezt ma dobta fel nekem a youtube: A Physics Prof Bet Me \$10,000 I'm Wrong

[1378] Zs762021-06-21 20:09:29

Szerintem ennek a filmnek (Tenet) nem volt sok köze a tudományhoz, teljesen elvont fikciói volt, csak olyan elemeket tartalmazott, amik csak a filmvásznon történhetnek meg.

Előzmény: [1376] PAL, 2020-08-31 01:41:55
[1377] marcius82021-06-10 14:45:14

Egy hídkapcsolás bal felső és jobb alsó eleme egy \(\displaystyle L\) induktivitású tekercs, jobb felső és bal alsó eleme egy \(\displaystyle C\) kapacitású kondenzátor, közélső eleme egy \(\displaystyle R\) ohmos ellenállás. Mekkora ennek a hídkapcsolásnak az eredő ellenállása? Ezen a hídkapcsolásnak egy \(\displaystyle U_0\) csúcsértékű \(\displaystyle omega\) frekvenciájú feszültség esik. Mekkora feszültség esik a tekercseken, a kondenzátorokon és az ellenálláson?

[1376] PAL2020-08-31 01:41:55

Üdv Mindenkinek!

Nem rég volt a TENET című film bemutatója, és engem az érdekelne, hogy egy fizikához értő egyén mennyit értett a film cselekményszálából, és az is érdekelne, hogy ennek a Nolan filmnek a látható történései mennyire hűek az ismert törvényekhez/elméletekhez, és mennyi benne a fikció? Esetleg laikusok számára megemlíthető a olyan könyv/példa amivel a film fizikája érthetőbb lesz. Az Interstellar esetében Kip Thorne Nobel-díjas fizikus "felügyelete" számomra egyfajta garancia volt a filmben előkerülő jelenségek valós bemutatására, hitelességére, ott 1-2 helyen már iskolás fejjel is megérthetők voltak a látottak/hallotak.

Köszönöm.

[1375] marcius82020-08-01 17:09:16

Nem régen olvastam, hogy a kínai Három Szurdok gát mögött annyi víz halmozódott fel, hogy az már mérhetően lassítja a Föld tengely körüli forgását. Ekkor ha csökken a Föld tengely körüli forgásának szögsebessége, csökken-e Föld forgásából származó forgási energia, és ha csökken ez az energia, mire fordítódik?

[1374] marcius82020-08-01 17:06:38

Azt tudjuk, hogy ahogy a Hold kering a Föld körül, a Hold Föld körüli keringése lassítja a Föld tengely körüli forgását, ennek oka a Holdnak a Földre kifejtett ár-apály erők. (A Hold gravitációs ereje a tengerek felszínét emeli illetve süllyeszti, és az így fellépő súrlódás például lassítja a Föld forgását.) Ugyanekkor a Hold egyre nagyobb sebességgel kering a Föld körül, és így a Hold a Földtől távolodik. De miért van az, hogy a Hold egyre nagyobb sebességgel kering a Föld körül?

[1373] Berko Erzsebet2020-03-24 07:00:24

Ott a hiba, hogy a gravitációs erő az csak a klasszikus fizikában használatos fogalom, és a klasszikus fizika csupáncsak bizonyos körülmények között használható közelítés. Pl. pici méreteknél a klasszikus fizika nem használható, hanem helyette a kvantummechanikát kell alkalmazni; nagy méretek és nagy gravitációs gyorsulások esetén pedig az általános relativitáselméletet kell alkalmazni, miként pl. a Te általad felvetett problémában is. Az általános relativitáselméletben nincs gravitációs erő, hanem görbült téridő van.

Előzmény: [1372] marcius8, 2020-03-23 22:09:57
[1372] marcius82020-03-23 22:09:57

Tegyük fel, hogy egy bolygón a gravitációs térerősség \(\displaystyle g=0,5∗10^{14}\) \(\displaystyle \frac{méter}{sec^2}\). És tegyük fel, hogy ezen a bolygón \(\displaystyle h=900\) \(\displaystyle méter\) magasról álló helyzetből leesik egy test. Hol a hiba a következő gondolatmenetben? Én nem találtam meg.

Newton második törvénye miatt \(\displaystyle F=m*a\), ahol \(\displaystyle F\) a testre ható erő, \(\displaystyle m\) a test tömege, \(\displaystyle a\) a test gyorsulása. Legyen \(\displaystyle m_0\) a test nyugalmi tömege, azaz a test tömege akkor, amikor álló helyzetből el kezd esni. Ahogy esik a test, úgy a sebességének függvényében növekszik a test \(\displaystyle m\) tömege, és úgy növekszik a testet gyorsító gravitációs \(\displaystyle F=m∗g\) gravitációs erő, amely a testet gyorsítja. (Ugye, a testre ható gravitációs erő egyenlő a test tömegének és a gravitációs térerősségnek a szorzatával.) Alkalmazva az \(\displaystyle F=m∗a\) Newton-törvényt, ahol tehát \(\displaystyle F=m∗g\), adódik, hogy \(\displaystyle a=g\), azaz a test gyorsulása az esés alatt végig \(\displaystyle g=0,5∗10^{14}\) \(\displaystyle \frac{méter}{sec^2}\). Mivel a test a gyorsulása végig ennyi, és a test \(\displaystyle h=900\) \(\displaystyle méter\) magasról esik álló helyzetből, így a test sebessége \(\displaystyle v=\sqrt{2gh}\) sebességgel ér földet, ami éppen a fénysebesség.

[1371] Lóczi Lajos2020-02-22 17:47:22

A hozzászólásod időzítése (év, hónap, nap, óra, perc, másodperc) extra precíz volt, gratulálok!

Előzmény: [1370] marcius8, 2020-02-20 20:02:02
[1370] marcius82020-02-20 20:02:02

És még annyi, hogy az összekötő ellenállás-huzalok csak a szabályos ötszög csúcsaiban érintkeznek mindkét kapcsolásban.

Előzmény: [1369] marcius8, 2020-02-20 19:48:38
[1369] marcius82020-02-20 19:48:38

Arra gondoltam, hogy a következő feladatot javaslom a fizika pontversenybe. De aztán mégsem javasoltam, mert egyrészt ebben a feladat inkább matekos jellegű, másrészt azért mert még én sem találtam meg a megoldást. Bármilyen segítséget előre is köszönök.

Egy szabályos ötszög csúcsait az oldalak mentén az ábrán látható módon összekötjük az \(\displaystyle R_{piros}\), \(\displaystyle R_{sárga}\), \(\displaystyle R_{zöld}\), \(\displaystyle R_{kék}\), \(\displaystyle R_{lila}\) ellenállás-huzalokkal. Ugyanennek a szabályos ötszögnek a csúcsait az átlók mentén összekötjük az \(\displaystyle r_{piros}\), \(\displaystyle r_{sárga}\), \(\displaystyle r_{zöld}\), \(\displaystyle r_{kék}\), \(\displaystyle r_{lila}\) ellenállás-huzalokkal.

Meghatározandóak az \(\displaystyle r_{piros}\), \(\displaystyle r_{sárga}\), \(\displaystyle r_{zöld}\), \(\displaystyle r_{kék}\), \(\displaystyle r_{lila}\) ellenállások, ha ismertek az \(\displaystyle R_{piros}\), \(\displaystyle R_{sárga}\), \(\displaystyle R_{zöld}\), \(\displaystyle R_{kék}\), \(\displaystyle R_{lila}\) ellenállások, és ha azt akarjuk, hogy az ötszög bármely két szomszédos csúcspontja között az eredő ellenállás változatlan maradjon.

Meghatározandóak az \(\displaystyle R_{piros}\), \(\displaystyle R_{sárga}\), \(\displaystyle R_{zöld}\), \(\displaystyle R_{kék}\), \(\displaystyle R_{lila}\) ellenállások, ha ismertek az \(\displaystyle r_{piros}\), \(\displaystyle r_{sárga}\), \(\displaystyle r_{zöld}\), \(\displaystyle r_{kék}\), \(\displaystyle r_{lila}\) ellenállások, és ha azt akarjuk, hogy az ötszög bármely két szomszédos csúcspontja között az eredő ellenállás változatlan maradjon.

[1368] Sinobi2019-12-27 10:42:51

> „Napkelte esetén napforduló előtt, napnyugta esetén a napforduló után. QED.”

Mármint pont fordítva.
Sematikus ábra: vízszintesen a napok, függőlegesen az időpontok. A sárga a delelés időpontjának változása, a szaggatott ívek a napforduló környékén a deleléshez viszonyított időpontok, a folytonos ívek az "igazi", óra szerinti időpontok. A szélsőértékek balra illetve jobbra tolódnak.

Előzmény: [1367] Sinobi, 2019-12-26 12:35:18
[1367] Sinobi2019-12-26 12:35:18

Téli napfordulókor a Föld közelebb van a Naphoz mint átlagban, a szögsebessége nagyobb, két delelés között eltelő idő nagyobb, mint az átlagos 24 óra. Az eltérés megközelíti alulról a +- fél percet https://en.wikipedia.org/wiki/Solar_time#Apparent_solar_time.

Ezért napkelte és a napnyugta időpontjának a szélsőértéke ott lesz, amikor már +- 1 perccel csökken/növekszik a nap hossza (lásd ábra). Napkelte esetén napforduló előtt, napnyugta esetén a napforduló után. QED.

Adatok még pl itt találhatók: https://www.timeanddate.com/sun/hungary/budapest

(Tehát az jött ki, hogy ha mondjuk a napéjegyenlőségek éppen az ellipszis csúcsaiba esnének, akkor is elcsúszna a napkelte és a napnyugta időpontjának a szélsőértéke egymástól – nem tudom, hogy ez jó-e?)

Feladat: írjuk le a déli féltekén a napnyugta és a napkelte időpontjának a viselkedését.
Nézzük meg a nyári napforduló körüli időpontokat is!
Adjunk minél több adatra nagyságrendi becslést, és használjunk minél kevesebb kikeresett adatot!

Előzmény: [1364] marcius8, 2019-12-12 09:07:13
[1366] marcius82019-12-21 00:08:58

Gyanús volt, de hát csak össze lehet szedni ennyi töltést, mert hogy elég nagy ez az univerzum....

Előzmény: [1365] Fálesz Mihály, 2019-12-18 09:21:04
[1365] Fálesz Mihály2019-12-18 09:21:04

A \(\displaystyle 10^9\) Coulomb töltés nem volt gyanús?

Előzmény: [1363] marcius8, 2019-12-12 09:03:42
[1364] marcius82019-12-12 09:07:13

Most tél van, és ilyenkor a Földön az északi féltekén rövidek a nappalok, és hosszúak az éjszakák. Valamikor karácsony környékén a legrövidebb a nappal, és a leghosszabb az éjszaka. Ebben még semmi különös sincsen. De! A Nap legkorábban valamikor december 14-e környékén nyugszik le a legkorábban, és valamikor január 4-e környékén kel fel a legkésőbb. Vajon a napkelte legkésőbbi időpontja és a napnyugta legkorábbi időpontja miért nincsen szinkronban egymással?

[1363] marcius82019-12-12 09:03:42

Középiskolás tankönyvben a következő feladatot olvastam: Egy \(\displaystyle Q=-2*10^{-6} Coulomb\) rögzített töltés körül egy \(\displaystyle m=0,1 milligram\) tömegű és \(\displaystyle q=+10^9 Coulomb\) töltésű részecske kering \(\displaystyle R=5 méter\) sugarú körpályán. Mekkora a töltés sebessége?

A klasszikus mechanika szerint valami irdatlan nagy sebesség adódott eredménynek, a fénysebesség többszöröse. (Azt hiszem, Han Solo és Chewbacca is örülne, ha az Ezeréves Sólyommal is ilyen sebességgel tudnának repkedni....) Na, mindegy, a feladatot ezek után úgy számoltam, hogy figyelembe vettem a részecske tömegének függését a sebességétől. De vajon a részecske töltése is függ a sebességétől, és ha függ, úgy függ, mint a tömeg?

[1362] marcius82019-07-02 16:54:57

Egy \(\displaystyle 5*10^{60}\ \rm{kg}\) tömegű csillag körül \(\displaystyle 2,4*10^8\ \scriptsize{\rm{\frac{méter}{sec}}}\) állandó nagyságú sebességgel, körpályán kering egy \(\displaystyle 12*10^{40}\ \rm{kg}\) nyugalmi tömegű bolygó. Mekkora a körpálya sugara? Az egyszerűbb számolás miatt legyen a gravitációs állandó: \(\displaystyle \gamma=\scriptsize\frac{2}{3}*10^{-10}\ \scriptsize{\rm{\frac{méter^3}{kg*sec^2}}}\), a fény sebessége vákuumban: \(\displaystyle c=3,0*10^8\ \scriptsize{\rm{\frac{méter}{sec}}}\). Itt igazából az a kérdés, hogy a csillag által a keringő bolygóra kifejtett gravitációs erő a keringő bolygó nyugalmi tömegére hat, vagy a keringő bolygó éppen aktuális tömegére.

[1361] marcius82019-05-25 20:19:07

Mekkora erővel hat a bal oldali töltés a jobb oldali töltésre? Mekkora erővel hat a jobb oldali töltés a bal oldali töltésre? A Coulomb-állandó értéke: \(\displaystyle k=9*10^9 \rm\tiny\frac{Volt*méter}{Amper*sec}\).

[1360] Berko Erzsebet2019-05-12 06:07:04

Érettségivel kapcsolatban. Tanórai fegyelem. Házi feladatok elkészítése. Tanórai anyag otthoni átnézése. Tankönyv kinyitása. Ezeket is lehetne vizsgálni. Ha ezek rendben voltak, de a dolgozat rosszul sikerült; akkor jogos a háborgás.

[1359] Gubbubu2019-05-11 11:20:26

Igen, nagyjából. :D Kifejezetten könnyű volt a matek érettségi. Évek óta egyre könnyebb mellesleg.

Aki nem szedett össze az első részből legalább 15, de még inkább 25 pontot (kb. három feladatot lehet "nehéznek" minősíteni ugyanis), az ássa el magát.

Állítólag a II. rész volt nehezebb. De hát aki nem kettest akar, hanem négyes-ötöst, az rinyálás helyett készüljön. Egyébként lehet javítóérettségit tenni, ha jól tudom.

Mondom ezt olyan tanárként, akit eléggé (sőt túlzottan) jóindulatúnak szoktak tartani a tanítványai.

Hangsúlyozom, hogy szvsz, tehát ellenvéleményekre nyitott vagyok.

Mellesleg, ha jól tudom, Németországban párhuzamosan folyik egy ugyanilyen petíciógyűjtős cirkusz, mert ott is "túlnehéz" lett az érettségi, szóval itt valami komolyabb dolog lehet a háttérben.

Előzmény: [1357] titok111, 2019-05-09 11:24:58
[1358] arab piac2019-05-10 12:11:17

Senkinek nincs ötlete a G. 662 feladat kapcsán?

Előzmény: [1352] arab piac, 2019-05-03 14:08:42
[1357] titok1112019-05-09 11:24:58

Az ide matek érettségi 1,5-szer volt nehezebb mint tavaly. Ennek két oka volt: egyrészt 1 lappal hosszabb volt, másrészt a papírlapok vastagabbak voltak.

[1356] marcius82019-05-07 22:47:28

Mondjuk a feladatot értem, csak a matek részét nem tudtam összerakni. Ahogy értelmezem ezt a feladatot, most egy olyan Carnot-gépet kell működtetni, amelynek a magasabb hőmérsékletű hőtartálya véges, alacsonyabb hőmérsékletű hőtartálya végtelen. Így ennek a Carnot-gép működése során a magasabb hőmérséklető hőtartályának a hőmérséklete csökken, az alacsonyabb hőmérsékletű hőtartályának hőmérséklete állandó. Ez a folyamat addig tart, amíg a magasabb hőmérsékletű hőtartályának a hőmérséklete le nem csökken az alacsonyabb hőmérsékletű hőtartály hőmérsékletére.

Előzmény: [1355] marcius8, 2019-05-07 16:47:57
[1355] marcius82019-05-07 16:47:57

Tudna valaki segíteni? Ezt a feladatot egy magántanítványomtól kaptam, és hát nincs elég pihent agyam a kérdés megválaszolásához. Előre is köszönöm mindenkinek a segítséget.

[1354] Sinobi2019-05-04 13:14:38

Hopsz, itt a link a feladathoz: [G.662. feladat] Szeretek mindenhova linket rakni, nem tudom most miért hagytam le.

OFF: a megoldás alatt a A KöMaL 2019. februári fizika feladatai nálam a matematika feladatokra mutat.

[1353] Sinobi2019-05-03 22:29:54

Hát az én intuíciómnak teljesen ellentmond hogy a c esetben v-nél kisebb sebességgel mozogjon.
Szerintem ha a kötél felcsavarodik a hengerre, akkor ha én húzom magam után, akkor utol fog érni, gyorsabban halad nálam.

Szívesen látnék róla videót vagy szimulált gifet, ha valakinek van ilyen programja és tudja kezelni is.

Előzmény: [1352] arab piac, 2019-05-03 14:08:42
[1352] arab piac2019-05-03 14:08:42

G. 662.(c) esetben a kis hengerhez felülről egy vele azonos átmérőjű, szabadon forgó másik kis henger is csatlakozik. A felső henger nekiszorul az alsónak, és a lebillenését egy-egy görgőhöz csatlakozó rúdszerkezet akadályozza meg. A felső hengerre is fonalat csévéltünk, és a fonál végét v sebességgel húzzuk. A korongok a talajon, illetve a kis hengerek egymáson nem csúsznak meg.

Valaki egy rajzon elmagyarázná, hogy itt pontosan mi történik? A honlapon közölt megoldásból ez számomra nem derül ki.

[1351] Sinobi2019-04-11 19:36:11

> A fenti gyakorlati szempontok ellenére a fizikai valóság tökéletesen leírható B-vel és E-vel, és nincs szükség a D-re és a H-ra, már csak azért sem, mert a fizikában csak mérhető mennyiségek vannak, és amikor valamit mérünk, az minden látszat ellenére mindig az E és a B.

Heh. Ha valami mérhető, akkor egy tetszőleges függvénye (pl konstansszorosa) is mérhető :P

De ha már említetted a Mai fizikát, 5-ik kötet, 1969, 154-es oldal: „A fizika történetének korábbi szakaszában, amikor még nagyon fontosnak tartották azt, hogy minden fizikai mennyiséget közvetlenül kísérletekkel lehessen meghatározni, a fizikusok örömmel vették észre, hogy meg tudják határozni E és D jelentését a szigetelőkben anélkül, hogy az atomok között kellene bujócskázniuk. Az E átlagos térerősség számszerűen egyenlő azzal az \(\displaystyle E_0\) térerősséggel, amely a térrel párhuzamos résben észlelhető. A D térerősséget pedig úgy lehet megmérni, hogy meghatározzák az \(\displaystyle E_0\) térerősséget a térre merőlegesen vágott résben.”

Előzmény: [1349] Berko Erzsebet, 2019-04-07 08:21:17
[1350] SmallPotato2019-04-08 23:55:46

Köszönöm a részletes választ.

"... a H jellemzőt (talán) meg sem említi, de amikor olyan gyakorlati kérdést érint, mint pl. a hiszterézisgörbe, akkor kénytelen H helyett pl. azt írni, hogy ..."

Jól értem tehát, hogy a fizikában, a mező jellemzéséhez elég a B, de gyakorlati szempontból (név nélkül, vagy megnevezve) szükség van a H-ra is?

Előzmény: [1349] Berko Erzsebet, 2019-04-07 08:21:17
[1349] Berko Erzsebet2019-04-07 08:21:17

A H úgy kerülhető meg, vagyis úgy mellőzhető, ahogy minden olyan könyvben olvasható, melyben (lényegében) nem látunk mást, csak B mezőjellemzőt. Több ilyen könyv is van: 1.) Középfokú, mely nem nagyon mélyül el az anyagban, bizonyos időt szánva a könyv átnézésére, úgy tűnik, hogy erre példa: dr. Jurisits József – dr. Szűcs József: Fizika 10. Hőtan. Elektromosságtan. Mozaik Kiadó – Szeged, 2002. 2.) Középfokú, mely icipicit jobban elmélyül az anyagban, B mezőjellemzőt használ, de megemlíti a H-t is. Pl.: dr. Halász Tibor – dr. Jurisits József – dr. Szűcs József: Fizika 11-12. Közép- és emelt szintű érettségire készülőknek. Mozaik Kiadó – Szeged, 2004. A 165. oldalon írja: Megjegyzés: A mágneses mező jellemzésére a mágneses indukció mellett (vagy helyett) esetenként használják a mágneses térerősséget is, melynek jele H, mértékegysége A/m. A két mennyiség közötti kapcsolat: B = (műr)*(mű0)*H. Például a tekercs belsejében a mágneses térerősség: H = I*N/l. 3.) Középfokú, mely icipicit szintén jobban elmélyül az anyagban, B mezőjellemzőt használ, a H jellemzőt (talán) meg sem említi, de amikor olyan gyakorlati kérdést érint, mint pl. a hiszterézisgörbe, akkor kénytelen H helyett pl. azt írni, hogy B0, melyet vákuumbeli indukciónak nevez. Lásd: Holics László: Fizika, gimnázium III. osztály, Nemzeti Tankönyvkiadó, Budapest, 1996, 304-305. oldal. Tehát helyesbítenem kell a korábban írtakat: Fentiekkel szemben minden olyan könyv használja a B-t is és a H-t is (meg a D-t is és az E-t is), mely könyv gyakorlati kérdésekkel is foglalkozik, és melynek írója nem akar elszakadni a több mint száz évre visszatekintő villamosmérnöki szakirodalomtól. Erre példa Dr. Jekelfalussy Gábor: Korszerű elektrotechnika, Műszaki Könyvkiadó, Budapest, 1970 könyve, mely most itt van előttem. Jekelfalussy ritka nyíltsággal mondja ki az igazságot a 63-64. oldalon: Képletátrendezéssel a villamos tér (6a) képletéhez hasonló alakú egyenletet kaptunk: M=(mű0)*(műr)*(I/l)*(Im)*A. (48a ) Az analógia alapján a (7) egyenletnek megfelelően a B=(mű0)*(műr)*I/l (49 ) képlettel definiált fogalmat a mágneses tér térerősségének kellene neveznünk (annál is inkább, mert ez a fogalom tényleg a tér erősségét fejezi ki). Sajnos a névadók, az erővonal hosszegységére eső áramot, vagyis a H=I/l (50) fajlagos gerjesztést nevezték el annak idején térerősségnek, és így B-t másként kellett elnevezni. Még szerencse, hogy az idegen indukció nevet kapta, így nem is kell rajta töprengeni, hogy a név fedi-e a fogalmat. Másolás/bemásolás vége.

A fenti gyakorlati szempontok ellenére a fizikai valóság tökéletesen leírható B-vel és E-vel, és nincs szükség a D-re és a H-ra, már csak azért sem, mert a fizikában csak mérhető mennyiségek vannak, és amikor valamit mérünk, az minden látszat ellenére mindig az E és a B.

Beírok még néhány sort Feynman Mai fizika 7. (Ferromágnesség, A H mágneses tér, 110. oldal környékén, 1986) … A H vektortér definícióját mi úgy választjuk, hogy H=B-M/((epszilon0)*c*c). (88.12) Így a (88.11) egyenlet alakja: … (88.13) Ez a képlet egyszerűnek látszik, de ha alaposabban megvizsgáljuk, akkor rájövünk, hogy a D és H betű mennyi bonyolultságot rejt magában. Most valamire figyelmeztetnem kell az Olvasókat. Akik számításaikban SI-egységekkel dolgoznak, más definíciót választottak H-ra. Nevezzük az ő terüket H(vessző)-nek (ők természetesen még nevezhetik H-nak), melyet úgy definiálnak, hogy H(vessző) = (epszilon0)*c*c*B-M. (88.14) (Továbbá az (epszilon0)*c*c helyett új számot, 1/(mű0)-t írnak; így még eggyel több állandót kell figyelemmel kísérniük!). Ezekkel a meghatározásokkal a (88.13) egyenlet még egyszerűbb lesz: … (88.15) De H(vessző)-nek ezzel a definíciójával problémák merülnek fel. Először azért, mert nem egyezik azon Olvasók meghatározásával, akik nem SI-egységeket használnak, másodszor, H(vessző)-re és B-re különböző egységeket ad. Úgy gondoljuk, hogy kényelmesebb, ha H egységei B egységeivel azonosak, mintha M egységeivel egyeznének meg, mint a H(vessző) egységei. Ha azonban valaki mérnök akar lenni és transzformátorokat, mágneseket és efféléket fog tervezni, nyitva kell tartania a szemét! Sok könyvet talál majd, amely H-t a (88.14) egyenlettel határozza meg a mi definíciónk, a (88.12) egyenlet helyett, és sok más könyvet - különösen a mágneses anyagokra vonatkozó kézikönyvet -, amelyek a B-t és H-t úgy kapcsolják egymáshoz, ahogy mi is tettük. Gondosan ki kell tehát találnia, hogy az adott esetben melyik jelölésmódot használták a könyvben...

[1348] Berko Erzsebet2019-04-07 06:27:07

A válasz készül.

[1347] SmallPotato2019-04-05 00:12:53

"Csak az „E” és csak a „B” az értelmes. A „D” és a „H” nem túl szerencsés tudománytörténeti események következménye, melyet a mérnöki gyakorlat tart életben."

El tudnád pár mondatban mondani, hogy pl. a "H" hogyan kerülhető meg, ha egy adott paraméterekkel (menetszám, hossz, áramerősség) rendelkező szolenoid mágneses terét szeretnénk leírni egyszer légmaggal, másszor mondjuk vasmaggal? A hivatkozott könyvek nincsenek kezem ügyében, és őszintén szólva elképzelésem sincs a válaszról.

Ha rosszul tettem fel a kérdést, vagy a válasz bonyolult, akkor rákeresek a nyomtatott irodalomban ... de (könyvtártól eltekintve) egyelőre nem látok megfelelőt. Köszönöm. :)

Előzmény: [1345] Berko Erzsebet, 2019-04-04 07:30:13
[1346] Sinobi2019-04-04 15:24:48

Elhittem a kérdést. Most megnéztem a mozaikos tankönyveket, egy darab D vagy H betű nem volt bennük. Azt hittem onnan jött az ötlet hogy azt tanítsa hogy mind a négy mennyiség kell, mert szerepel a tankönyvben. El nem tudom képzelni, hogy honnan vette, hogy ez az állítás egyáltalán igaz.

[1345] Berko Erzsebet2019-04-04 07:30:13

Van hozzá anyag. Csak az „E” és csak a „B” az értelmes. (A „D” és a „H” nem túl szerencsés tudománytörténeti események következménye, melyet a mérnöki gyakorlat tart életben.) Ebben a szellemben íródott Dr. Jekelfalussy Gábor: Korszerű elektrotechnika című könyve is. Ebben a szellemben íródott Dr. Jánossy Lajos: FIZIKA a gimnázium szakosított tantervű (IV. osztálya számára (I-II. kötet)) könyve is. Ebben a szellemben tartotta elektrodinamika előadásait Jánossy Lajos az ELTE TTK fizikus szakán, és ebben a szellemben vezette az előadáshoz tartozó gyakorlatokat Gnädig Péter.

[1344] Sinobi2019-03-27 20:05:11

Nincsen szükség mind a négyre, kettővel is le lehet írni. Sokak szerint az E és a B fundamentális és fizikai, míg a D és a H emergens, és csak matematikai jelölés-egyszerűsítés.
Hogyhogy nincsen hozzá anyag?

Előzmény: [1343] marcius8, 2019-03-26 11:20:10
[1343] marcius82019-03-26 11:20:10

Középiskolában hogyan lehet elmondani, hogy a mágneses mező jellemzéséhez szükség van a \(\displaystyle B\) mágneses indukció-vektorra és szükség van a \(\displaystyle H\) mágneses térerősség-vektorra? Miért nem elég mondjuk csak a \(\displaystyle B\) mágneses indukció-vektor a mágneses mező jellemzéséhez?

Középiskolában hogyan lehet elmondani, hogy az elektromos mező jellemzéséhez szükség van a \(\displaystyle D\) elektromos indukció-vektorra és szükség van az \(\displaystyle E\) elektromos térerősség-vektorra? Miért nem elég mondjuk csak a \(\displaystyle D\) elektromos indukció-vektor az elektromos mező jellemzéséhez?

[1342] Sinobi2019-02-18 19:52:39

Gőz/gáz teszteknél:
Ha egy anyag gáz halmazállaptú légnemű, akkor kritikus hőmérséklet felett gáz, alatta meg gőz. (Víz esetén ez 374 °C
Különbség nincs.

Egyébként meg a gáz meg a gőz is állhat sokféleképpen mondatokban, jelölheti az anyagot magát, a halmazállapotát, lehet jelző stb., így az általános "mi a különbség" kérdésre nem igazán lehet lényegre törő választ adni.

Előzmény: [1340] marcius8, 2019-02-18 09:37:39
[1341] titok1112019-02-18 09:45:57

A gőz normál körülmények között a víz hevítése során keletkező gáz halmazállapotú víz. (Szobahőmérsékleten is tudsz gőzt csinálni: egy fecskendőbe rakjál kb 1/4 rész vízt, fogd be a végét, és húzd ki a fecskendőt, rögtön elkezd forrni és gőzölögni a víz.) Használatos még a gőz egyéb esetekre is, pl higanygőz. A gázok normál körülmények között gáz halmazállapotú elemek/vegyületek. (pl H2, He, Co2, O2, stb.)

A Wikipedia szerint korrektebbül: A gőz olyan légnemű közeg, amely még nem viselkedik ideális gázként, mert hőmérséklete a forráspontja felett, de a kritikus hőmérséklet alatt van. Emelkedő hőmérsékletnél ez a közeg egyre inkább az ideális gáz tulajdonságait veszi fel, és innentől kezdve már gáznak nevezik

Előzmény: [1340] marcius8, 2019-02-18 09:37:39
[1340] marcius82019-02-18 09:37:39

El tudja valaki mondani lényegre törően, hogy mi a különbség a gáz és a gőz között?

[1339] marcius82019-01-26 18:04:51

Mondjuk ha van ilyen festék, akkor van-e ilyen sárga, zöld, piros, fekete, kék, stb... színű festék?

Előzmény: [1338] marcius8, 2019-01-26 18:03:42
[1338] marcius82019-01-26 18:03:42

Van-e olyan festék, amelyet üvegre, műanyag lapra, vagy papírra kenve nem látszik, de ha az ezzel a festékkel összekent üveget, műanyag lapot vagy papírt a mobiltelefonnal lefényképezzük, akkor a fényképen már látszik a festék? Minden választ előre is köszönök, maradok tisztelettel: Bertalan Zoltán.

[1337] titok1112019-01-18 12:49:40

Van egy ilyen jelenség is: https://index.hu/tudomany/keccs080505/

De szerintem arról lehet szó, hogy van benne hűtött védőgáz, ami szobahőmérsékleten már jelentős nyomáskülönbséget produkál. Főleg az E-mentes verziókban. Ha megnyomogatsz egy vadi új flakont, sokkal keményebbnek érzed, mint felnyitás után (hiába zárod vissza)

Előzmény: [1333] Mihalecz Éva, 2019-01-15 09:39:23
[1336] Fálesz Mihály2019-01-16 22:41:34

Én azt találgatnám, hogy a ketchupban levő ecet és víz párolog, és ez okozhat a flakonban túlnyomást.

De ez csak légből kapott találgatás.

Lehetne kisérletezni tele és félig üres flakonnal, rövidebb és hosszabb állva hagyással, szagolgatni, melegíteni, hűteni ...

Előzmény: [1335] Berko Erzsebet, 2019-01-16 05:56:12
[1335] Berko Erzsebet2019-01-16 05:56:12

Talán azért spriccel kinyitáskor a ketchupos flakon, mert a kinyitás érdekében a flakont egyik kezünkkel le kell szorítanunk, vagy meg kell szorítanunk, ami miatt a műanyagból készült flakon összenyomódik, benne a ketchup nyomása megnövekszik, s ez a megnövekedett nyomású ketchup a flakon kinyitásakor kispriccel a flakonból. Ha a flakon merev anyagból, pl. igen vastag acélból volna, akkor mindez nem fordulna elő.

[1334] jonas2019-01-15 16:18:52

Érdekes, nekem nem szokott spriccelni.

Előzmény: [1333] Mihalecz Éva, 2019-01-15 09:39:23
[1333] Mihalecz Éva2019-01-15 09:39:23

Sziasztok!

Mihalecz Éva vagyok, tanár egy vidéki középiskolában. 6. osztályos nagyfiamhoz a természetismereti tanárnő olyan kérdést intézett, amit nem sikerült megoldani.

A kérdés a következő: Miért spriccel a ketchupos flakon ha kinyitjuk?

Támpontnak a nyomást jelölte meg, de így se tudom továbbgondolni. Gázok zárt térben való mozgásáról lehet esetleg szó?

Köszönöm a válaszokat előre is! Évi

[1332] marcius82018-11-21 22:09:29

A kapcsoló zárása után sok idővel a tekercs olyan mint egy 0 Ohm ellenállású áramköri elem. Így ekkor az áramkör tekinthető egy olyan egyenáramú áramkörnek, amelyben az \(\displaystyle R_2\) és \(\displaystyle R_3\) ellenállások párhuzamosan vannak kapcsolva, és az \(\displaystyle R_{23}\) ellenállásokkal sorosan van kapcsolva az \(\displaystyle R_1\) és \(\displaystyle R_4\) ellenállás. Az áramkör eredő ellenállása 740 Ohm, a főágban folyó áram 2/37 Amper, az \(\displaystyle R_2\) ellenálláson átfolyó áram 6/185 Amper, és ez az áram folyik a tekercsen keresztül is. A kapcsoló nyitása után közvetlenül ez az áram folyik az áramkörnek a tekercset és az \(\displaystyle R_2\), \(\displaystyle R_3\) ellenállásokat tartalmazó hurokjában. Ebben a hurokban az időállandó értéke: \(\displaystyle L\)/\(\displaystyle (R_2+R_3)\), ennek ismeretében a keresett áramerősséget ki tudom számolni.

Előzmény: [1331] jonas, 2018-11-15 14:55:43
[1331] jonas2018-11-15 14:55:43

Ez két részes feladat. A könnyebb rész az, amíg a kapcsoló hosszú ideig zárva van. Ezt meg tudod oldani? Mit csinál akkor a tekercs, és mennyi lesz a feszültség az \(\displaystyle R_3\) ellenálláson?

Előzmény: [1330] marcius8, 2018-11-13 23:02:38
[1330] marcius82018-11-13 23:02:38

Az ábrán látható áramforrás állandó feszültsége: \(\displaystyle U\)=40 Volt, az ellenállások: \(\displaystyle R_1\)=100 Ohm, \(\displaystyle R_2\)=200 Ohm, \(\displaystyle R_3\)=300 Ohm, \(\displaystyle R_4\)=400 Ohm, \(\displaystyle L\)=0,5 Henry. Miután a kapcsoló nagyon hosszú ideig zárva volt, a kapcsoló nyitott állapotba került. Mekkora a tekercsen átfolyó áram erőssége a kapcsoló nyitása után 4 sec múlva?

[1329] marcius82018-08-06 14:20:23

Ami tény: A Hold kering a Föld körül. A keringés során a Hold nagyon lassan, de egyre távolabb kerül a Földtől, ugyanakkor a Föld egyre lassabban forog a tengelye körül. Így elmondhatjuk, hogy a Holdnak a Föld körüli keringése során a Hold összenergiája növekszik, míg a Föld összenergiája csökken, tehát a Föld energiát ad át a Holdnak. De vajon hogyan történik ez az energiaátadás?

[1328] SmallPotato2018-05-31 07:22:20

Erről nem is tudtam.

Köszönöm!

Előzmény: [1327] Fálesz Mihály, 2018-05-31 06:51:58
[1327] Fálesz Mihály2018-05-31 06:51:58

A LED-ek nem egyszerre világítanak, hanem soronként kapcsolja őket be egy-egy rövid időre a rendszer.

https://www.hobbielektronika.hu/cikkek/msgeq7_equalizer_ic_hasznalata_arduino-val.html?pg=3

Előzmény: [1326] SmallPotato, 2018-05-31 00:55:09
[1326] SmallPotato2018-05-31 00:55:09

Lehet, hogy túlegyszerűsítem a dolgot, de szerintem a LED-ek vezérlésének véges időigénye miatt. A pontok kigyújtása nem egyetlen "pillanat" alatt megy végbe, és adott LED-oszlop pontjai adott esetben emberi szemmel is érzékelhetően nem egyszerre jelennek meg. A megjelenítendő ábra adott pont-oszlopának megjelenítése a kijelző adott LED-oszlopának alján (tetején?) kezdődik, de ha az ábra vízszintesen mozog, akkor már egy másik (jó esetben szomszédos) LED-oszlop tetején (alján?) fejeződhet be.

Itt egy digitális kamerával készült fotó egy kb. 80 km/h sebességgel haladó vonatból hátrafelé fényképezve. A talpfákat látva talán érthető, miért jutott eszembe. :)

Előzmény: [1325] marcius8, 2018-05-29 12:47:10
[1325] marcius82018-05-29 12:47:10

Gyakran van úgynevezett led-kijelzős fényújság például üzletek vagy vendéglátók kirakataiban vagy bejáratánál, amelyen a led-kijelzők által szöveg van megjelenítve. A fényújságon a led-kijelzők vízszintes sorokban és függőleges oszlopokban vannak elrendezve. Ha egy ilyen fényújságon a megjelenített szöveg nyugalomban van, tehát nem mozog semerre, akkor a szöveg is rendesen látszik. De ha a fényújságon a szöveg például jobbról balra halad, akkor a szöveg megdőlve látszik. Vajon miért?

[1324] kompet52018-05-06 22:21:53

Sziasztok!

Ha valakinek meglenne a P. 3740. feladat megoldása, megköszönném :)

[1323] SmallPotato2018-04-23 02:09:17

"Ha az ajtó puhább és jobban deformálódik, akkor talán kevésbé számít."

Ez egészen pontosan így van. Ezért használnak pl. csavarkötéseknél rugós alátéteket is: a csavar terhelés okozta hosszváltozását egy sima alátét gyakorlatilag nem követi, emiatt a csavaranya szorítása megszűnik és az kilazul, de a rugós alátét – kisebb merevsége révén – sokkal nagyobb deformációk közepette is kontaktusban marad az anyával és nem engedi azt elforogni.

Előzmény: [1321] Sinobi, 2018-04-22 15:15:16
[1322] SmallPotato2018-04-23 01:58:03

A "századmilli"-t a deformálatlan méretekre értettem.

Ha az ajtó a felső tartóra nehezedik először (mert az ő pántjai közt kisebb a távolság, mint a félfa pántjai közt), akkor az egyensúly beállta után a felső tartón lesz nagyobb az erő, az alsón kisebb, és az ajtó csak "rálóg" az alsóra. Ha elképzeljük, hogy az ajtón lényegesen kisebb a pánttávolság, mint a félfán, akkor az alsó pánt teljesen tehermentes marad, mert az ajtó nem nyúlik annyit, hogy alul is feltámaszkodjon.

Ha az ajtó az alsó tartóra nehezedik először (mert az ő pántjai közt nagyobb a távolság, mint a félfa pántjai közt), akkor az egyensúly beállta után az alsó tartón lesz nagyobb az erő, a felsőn kisebb, és az ajtó csak "rákönyököl" a felsőre. Ha elképzeljük, hogy az ajtón lényegesen nagyobb a pánttávolság, mint a félfán, akkor a felső pánt teljesen tehermentes marad, mert az ajtó nem nyomódik össze annyit, hogy felül is feltámaszkodjon.

Összefoglalva: az erőeloszlás jelentősen függ az ajtón ill. a félfán mérhető (terheletlen) pánttávolságok különbségétől.

Előzmény: [1321] Sinobi, 2018-04-22 15:15:16
[1321] Sinobi2018-04-22 15:15:16

> Hozzátartozik (bár ez már nem a fizika, hanem a gyakorlati alkalmazhatóság problémája), hogy az erőeloszlás brutálisan változik akkor, ha a tartók közti távolság akár pár századmilliméteres változtatásával a (mondjuk) eredetleg alsó tartón álló és a felsőre csak ráereszkedő ajtó átmegy a felső tartón lógó és az alsóra ráereszkedő ajtóba, vagy fordítva.

Ez a „századmilli” a deformáció méretétől függ, nem? Ha az ajtó puhább és jobban deformálódik, akkor talán kevésbé számít. (?)

Persze végig kéne számolni, hogy ajtó helyett mondjuk rugót akasztunk fel két ponton.

Előzmény: [1320] SmallPotato, 2018-04-20 00:27:05
[1320] SmallPotato2018-04-20 00:27:05

Azért gondolom a közelítést nehezen kiszámíthatónak, mert egy (mondjuk) két ponton megtámasztott, akár egyenletes tömegeloszlású (mondjuk) téglatest deformált alakja nem egyszerű geometriájú. Ha csak a nagy (2x1 méteres) téglalap síkbeli deformációját feltételezem, akkor sem egyszerű.

Ha olyan közelítést alkalmazok, hogy az ajtó mondjuk "megereszkedik" és a téglalap alakja (változatlan oldalhosszakkal) paralelogrammává torzul, akkor a tartókon az erőeloszlás ugyanúgy határozatlan marad, tehát a modell csak bonyolultabb, de nem visz közelebb a megoldáshoz.

Ha feltételezem, hogy a két tartó pontjaiban ható pontszerű erők változó hosszúságúra és/vagy S-alakra fogják deformálni a tartókon átmenő eredetileg függőleges egyenes élt, akkor pedig jön az igen bonyolult számítás.

Hozzátartozik (bár ez már nem a fizika, hanem a gyakorlati alkalmazhatóság problémája), hogy az erőeloszlás brutálisan változik akkor, ha a tartók közti távolság akár pár századmilliméteres változtatásával a (mondjuk) eredetleg alsó tartón álló és a felsőre csak ráereszkedő ajtó átmegy a felső tartón lógó és az alsóra ráereszkedő ajtóba, vagy fordítva.

Előzmény: [1319] Sinobi, 2018-04-19 09:23:47
[1319] Sinobi2018-04-19 09:23:47

Az erők függőleges komponense nem adódik ebből a modellből (a feladatban megadhatják). A vízszintes komponensek viszont meghatározhatók, mint ahogy SmallPotato meg is tette [1312]-ben. Nem is nehéz.

Nem tudom, hogy miért lenne "öngyilkosság" kiszámolni az ajtó adataiból. Simán lehet, hogy tök egyszerűen adódik egy épeszű becslés. (Mondjuk az jön ki, hogy viszonylag tág határok között, vagy, valami adatnak a végtelenben vett határértékében 0.5-0.5 arányú a függőleges terhelés eloszlása.)

> Ezt a feladatot egy távoli fizika könyvben találtam.

Távoli?

Előzmény: [1316] marcius8, 2018-04-18 21:24:37
[1318] SmallPotato2018-04-18 23:52:03

Hogy a megoszlás fele-fele legyen, azt semmi nem indokolja. Merev testeket feltételezve ezt konkrétan lehetetlen megoldani (vagy a hasraütés bármely más arányt is megenged); rugalmas testeknél pedig igencsak el kellene mélyedni a számításokban - ez esetben egy kis méretpontatlanágot még elvisel a rendszer úgy, hogy a deformáció miatt utóbb a ráakasztás pillanatában nem használt tartóra is ráereszkedik az ajtó és végül mindkét tartóra nullától különbőző függőeges erő fog hatni. De hogy ezek mely esetben lesznek egyenlők ... az egyáltalán nem magától értetődő.

Előzmény: [1316] marcius8, 2018-04-18 21:24:37
[1317] marcius82018-04-18 21:28:28

Köszi, hogy foglalkozol a feladattal. Az 1. feladatban a korong forgástengelye függőleges. A korong a vízszintes és súrlódásmentes asztalon mozog, a korong egyenletes tömegeloszlású.

Előzmény: [1312] SmallPotato, 2018-04-15 20:02:08
[1316] marcius82018-04-18 21:24:37

Akkor mégsem vagyok annyira tájékozatlan, ami a 2. feladatot illeti. Ezt a feladatot egy távoli fizika könyvben találtam. Ott a megoldás során fel volt tételezve, hogy a tartó erők függőleges komponense egyformán oszlik meg a tartókon, de ezt különösebben nem indokolták. Szerintem igazából az van, hogy az ajtót vagy az egyik tartó tartja, vagy a másik tartó.

Előzmény: [1311] marcius8, 2018-04-14 21:52:52
[1315] SmallPotato2018-04-16 23:16:28

(Másik kérdés, hogy a szilárdságtani paraméterek birtokában is öngyilkosság lenne a dologgal manuálisan próbálkozni :))

Előzmény: [1314] SmallPotato, 2018-04-16 22:58:35
[1314] SmallPotato2018-04-16 22:58:35

Mármint ha a tartókra ható erőket akarjuk mérni? Attól függ.

A számításhoz szükség lenne a szóban forgó anyagok szilárdságtani jellemzőire (leginkább a rugalmassági modulusra), mert a két támaszerő függőleges komponensét (azok megoszlását az ajtó súlyán belül) az ajtó és a tartók rugalmas deformációja fogja meghatározni.

Pontosítva az eredeti mondatomat a feladat statikailag határozatlan (szilárdságtanilag pedig adathiányos).

Előzmény: [1313] Sinobi, 2018-04-16 11:45:56
[1313] Sinobi2018-04-16 11:45:56

> Ha mindkét tartó kifejt függőleges erőt is, akkor a feladat határozatlan,

Mit mutat a mérőműszer?

Előzmény: [1312] SmallPotato, 2018-04-15 20:02:08
[1312] SmallPotato2018-04-15 20:02:08

1. A korong geometriai tengelye vízszintes vagy függőleges?

2. Ha mindkét tartó kifejt függőleges erőt is, akkor a feladat határozatlan, mert az ajtó súlyát ellensúlyozó erőt a két tartó között nincs mi alapján felosztani.

Ha csak az egyik fejt ki függőleges erőt, akkor erre a tartópontra fel kell írni az ajtóra ható forgatónyomatékok egyensúlyát (a súlypontban ható nehézségi erő vs. a másik tartó által kifejtett vízszintes erő nyomatékainak egyensúlya), és ebből megkapjuk a tartók által kifejtett erők vízszintes komponensét (e komponensek nagysága egyenlő, csak irányuk ellentétes, hiszen több vízszintes erő nem hat), az egyszem függőleges összetevő pedig az ajtó súlya.

Előzmény: [1311] marcius8, 2018-04-14 21:52:52
[1311] marcius82018-04-14 21:52:52

Tisztelt Fórumozók! Két feladat megoldását keresem.

1. Egy vízszintes súrlódásmentes asztalon egy \(\displaystyle m\) tömegű és \(\displaystyle r\) sugarú egyenletes tömegeloszlású (sűrűségű) henger alakú korong nyugszik. A korong kerületére egy vékony, elhanyagolható tömegű fonal van felcsavarva, amelynek a korong kerületéről lelogó végét \(\displaystyle F\) erővel elkezdjük húzni. Mekkora lesz a korong gyorsulása és szöggyorsulása?

2. Egy egyenletes tömegeloszlású téglalap alakú vékony ajtó 1 méter széles, 2 méter magas, az ajtó súlya 500 Newton. Az ajtó függőleges tengely körül foroghat, az ajtó a 2 méter hosszú oldalával csatlakozik a forgástengelyhez. Az ajtó két tartóval van rögzítve a forgástengelyhez, az egyik tartó az ajtó aljától 0,7 méter távol van, a másik tartó az ajtó tetejétől 0,3 méter távol van. Mekkora a tartók által kifejtett, az ajtóra ható tartóerők nagysága?

Minden segítséget előre is köszönök. BZ.

[1310] Sinobi2018-04-03 12:13:35

> Nem tudom, de valahogy még mindig nem igazán értem, hogy mit nevezünk fekete lyuknak. A legtöbb helyen azt találtam, hogy olyan test, amelynek gravitációs terét nem hagyja el a fény. Na de ezt hogyan kell érteni? Attól, hogy még a fény nem hagyja el egy test gravitációs terét, attól még a fény ettől a testtől még bármilyen távol kerülhet. Vagy teszem azt, hogy a vörös fény nem hagyja el egy test gravitációs terét, attól még a kék fény elhagyhatja ennek a testnek a gravitációs terét, hiszen a kék fény fotonjai nagyobb energiájúak. És konkrétan mit jelent az hogy eseményhorizont? Ha a vörös vagy kék fény kiindul egy fekete lyukból, annak hol van az eseményhorizontja? Minden segítséget előre is köszönök. Maradok tisztelettel: Bertalan Zoltán.

Mivel a fekete lyukak definícióit, jellemzéseit megtalálod máshol ([wiki] vagy [sulinet fizika könyv]), én inkább a benned levő ellentmondásra koncentrálnék.

Kb sehol nem ezt adják meg definíciónak. Ez a definíció hibás/értelmetlen: egy objektum gravitációs tere az az univerzum.

Az ilyesmi definíciók gyakrabban úgy néznek ki, hogy „olyan térrész, amelyből nem lehet tetszőlegesen nagy, véges messzeségre elmenni”. (Azaz van egy korlát, amelynél messzebb már nem lehet menni, ez az eseményhorizont.) Se fény, se test, se más. (Pontosabb definíciót találsz máshol.)

> Vagy teszem azt, hogy a vörös fény nem hagyja el egy test gravitációs terét, attól még a kék fény elhagyhatja ennek a testnek a gravitációs terét, hiszen a kék fény fotonjai nagyobb energiájúak.

Általában úgy vesszük, hogy egy pontból ha a vörös fény nem tud kimenni tetszőlegesen messzire, akkor a kék fény sem. (Ha 0-nak vesszük a fény nyugalmi tömegét, és, elhanyagoljuk a gravitációs hatását, akkor ez igaz.)

> És konkrétan mit jelent az hogy eseményhorizont?

Fekete lyuk határa.

Előzmény: [1305] marcius8, 2018-03-29 14:59:03
[1309] kovats2018-04-01 08:09:27

A Napunkat is körül veszi egyfajta anyag - helyesebb elnevezéssel: plazma-tömörülések, azaz, granulák.

Miért haladna át a fény egy ilyen "keveréken" elhajlás nélkül???

"A granulákban 5-7 km/s sebességgel felfelé áramló forró gáz van, míg a granulák között már a kihűlt, lefelé sűllyedő gázt található. Egy átlagos granula átmérője 500 km. A granulák, miután létrejönnek, folyamatosan változtatják az alakjukat, keverednek az őket körülvevő anyaggal és lassan eltűnnek"— Forrás: csillagaszat.hu

[1308] kovats2018-04-01 05:13:56

...és miért lenne például "homogén" a tér - még ha az nagyon ritka is - a nagy tömegű égitestek környezetében. A sűrűség-különbség is okoz fényelhajlást. A magától nem világító Mars légköre is pl. nagyon ritka, és logikus, hogy emiatt hatással kell lesz a rajta áthaladó elektromágneses hullámokra.

[1307] SmallPotato2018-03-31 20:38:18

Nem világító égitestek mellett a fény nem hajlik el?

Előzmény: [1306] kovats, 2018-03-30 06:25:13
[1306] kovats2018-03-30 06:25:13

(Csak józan paraszti logikával, semmi matematika)

Hozzászólásomban csak egy megfontolandó dologra hívnám fel a figyelmet. A foton az nem egy tárgy, amit csak úgy elnyelhet valami. A túlzásba vitt "elméletieskedés" miatt már sokan megfeledkeznek arról, hogy a foton "csupán" egy hatás-csomag az elektromágneses családban: azaz, elektromos és mágneses hatások váltakozó hatásainak sora. S mint ilyen - hasonlóan pl. a rádióhullámokhoz is - irányítható, tömöríthető, erősíthető, tükrözhető, elnyelethető, felhasználható, stb.

Ha egy fénysugár ráesik egy nagy tömegű, feketére festett vaslemezre, akkor az onnan se tud "kilépni". Az viszont biztos, hogy valamilyen kölcsönhatásba lép: pl. melegszik.

Fekete lyuk? Gravitáció? Véleményem szerint, ha megértettük, hogy a foton valójában "micsoda", akkor megértettük azt is miért nincs tömege, de akkor miért is lehet beszélni gravitációs hatásról?

Az, hogy a nagy tömegű csillagok mellett a fény elhajlik, miért gondoljuk hogy az a gravitációs hatás miatt történik.

Ha már csillagról beszélünk, akkor annak fénye van. Nagyon erős, és sokféle hullámhosszú fénye van. A fénynek a fényre is lehet hatása. Miért is ne lenne. Két elektromágneses hatás miért is ne hatna egymásra?

Gondolom ez nem okoz belátási nehézséget senkinek, csupán a színek keverhetőségére kell gondolni.

Előzmény: [1305] marcius8, 2018-03-29 14:59:03
[1305] marcius82018-03-29 14:59:03

Nem tudom, de valahogy még mindig nem igazán értem, hogy mit nevezünk fekete lyuknak. A legtöbb helyen azt találtam, hogy olyan test, amelynek gravitációs terét nem hagyja el a fény. Na de ezt hogyan kell érteni? Attól, hogy még a fény nem hagyja el egy test gravitációs terét, attól még a fény ettől a testtől még bármilyen távol kerülhet. Vagy teszem azt, hogy a vörös fény nem hagyja el egy test gravitációs terét, attól még a kék fény elhagyhatja ennek a testnek a gravitációs terét, hiszen a kék fény fotonjai nagyobb energiájúak. És konkrétan mit jelent az hogy eseményhorizont? Ha a vörös vagy kék fény kiindul egy fekete lyukból, annak hol van az eseményhorizontja? Minden segítséget előre is köszönök. Maradok tisztelettel: Bertalan Zoltán.

[1304] kovats2018-03-01 06:25:48

A gravitációs hullám alatt a periodikusan változó hatásokat kell érteni. Az elnevezésből adódóan ezen hatások alatt erőhatásokat, mégpedig tömegvonzási erőket kell értenünk.

A Hold-Föld kapcsolatában is létezik egyfajta gravitációs hullám, (erő lüktetés), csak kis frekvenciával, melynek periódusa kvázi 24 óra. Ne tévesszen meg senkit az ár-apály jelenség 6 órás periódusa. A 6 óra abból adódik, hogy a Földön egy időben az átellenes oldalon is létrejön az ár, melyet a Föld ezen oldali kilendülése okoz, ugyanis a Föld-Hold egy közös tömegpont körül kering a Nap körül.

Az, hogy a gravitációs hullám transzverzális-e vagy longitudinális, azt nem a matematikának kell majd megmondani. Ennek eldöntéséhez a fizikai kép ismerete szükséges. Ebből a megfontolásból - véleményem szerint - a gravitációs hullám gömbszerűen és longitudinálisan terjed.

A fenitek megértéséhez nincs szükség hipotézisre.

Előzmény: [1303] marcius8, 2018-01-21 08:44:58
[1303] marcius82018-01-21 08:44:58

A De-Broglie hipotézis szerint egy \(\displaystyle p\) lendületű testhez egy \(\displaystyle \lambda=h/p\) hullámhosszúságú hullám rendelhető, ahol \(\displaystyle h\) a Planck-állandó. De vajon ez a hullám transzverzális vagy longitudinális? Van-e annak jelentősége, hogy ez a hullám transzverzális vagy longitudinális?

[1302] marcius82017-11-29 12:11:27

Ha jól hallottam (láttam, olvastam), bizonyítást nyert a gravitációs hullámok létezése. Mennyi a gravitációs hullámok sebessége vákuumban és nem vákuumban?

[1301] Sinobi2017-07-28 16:19:03

Mi az, hogy bolygó? A Pluto most bolygónak számít vagy sem? És a Tejútrendszer közepén levő szupermasszív fekete lyuk annak számít?

Előzmény: [1300] marcius8, 2017-07-28 13:56:50
[1300] marcius82017-07-28 13:56:50

Na hogy én legyek az 1300-ik hozzászóló... (jubileum) Állhat-e egy fénysugár egy bolygó körül körpályára, vagy akár ellipszis-pályára? Netán, ha igen, akkor ez a bolygó tekinthető-e fekete lyuknak?

[1299] marcius82017-07-28 13:51:44

Van egy merev korong, amelynek sugara 600000 km. Ezt a korongot megforgatják 2 rad/sec szögsebességgel. Mi fog történni ezzel a merev koronggal? (Mert hogy a korongnak lesznek olyan pontjai, amelyeknek a sebessége a klasszikus fizika szerint nagyobb a fénysebességnél.) Előre is köszönöm mindenki válaszát!

[1298] Sinobi2017-07-16 13:08:55

> A ládának a köteles billentés közben biztosan 1 kg-nál többel változik a súlya.

Ha mondjuk a láda tetejére erősítünk (2 helyen) egy nagyon hosszú botot, és egyoldalú emelőnek használjuk, akkor a láda súlya a kövön billentéskor csak picit változik, nem? ((És ugyanezzel a bottal billentés közben a láda súlyát is megkapjuk, még csak mérleget sem kell alácsúsztatni))

Köteles billentésnél meg a láda súlyának a fele esik a kötélre, és a szokottnak csak a fele a kőre.

De fix me, nagyon rég nem foglalkoztam egyszerű gépekkel.

Előzmény: [1297] jonas, 2017-07-15 04:16:14
[1297] jonas2017-07-15 04:16:14

Ha a ládát kötéllel tényleg meg lehet billenteni úgy, hogy ezt a csapda nem veszi észre, akkor a csapda nem méri nagyon pontosan a láda súlyát. A ládát meg kell billenteni, és alá kell rakni egy fürdőszobamérleget vagy mezőgazdasági mérleget. Az én fürdőszobamérlegem például 180 kg-ig mér és maga kb. 1 kg-ot nyom. A ládának a köteles billentés közben biztosan 1 kg-nál többel változik a súlya. Ha a láda nagy, akkor nagyobb mérleg kell, de az arányok hasonlóak.

Előzmény: [1296] merse, 2017-07-13 23:40:44
[1296] merse2017-07-13 23:40:44

http://duplapluszjo.blogspot.hu/2017/06/kenderbajusz-kalozkapitany-es.html

Kenderbajusz kalózkapitány és a kincsesláda Kenderbajusz kalózkapitány megtalálta a híres elveszett aranykincset egy lakatlan sziget eldugott barlangjában. A téglatest alakú hatalmas kincsesláda zsúfolásig van tömve arannyal és drágakövekkel. A láda a barlang egy vízszintes padlójú hatalmas csarnokának a közepén áll, azonban csapdák védik. Közvetlenül a láda alatti téglalap alakú terület egy különálló kődarab. Ez a csapda központi eleme, mely úgy funkcionál, mint egy mérleg. Ha megváltozna a kődarabon lévő összsúly, akkor az működésbe hozna egy szerkezetet, aminek hatására a barlang kijáratai beomlanak, és a kalózok örökre bennragadnak. Kenderbajusz ezért azt eszelte ki, hogy amint a ládát kötéllel levontatják a kőről, egy pontosan ugyanolyan súlyú ládát egyúttal rátolnak a kőre. Ehhez azonban tudni kéne a kincsesláda tömegét. Segítsetek Kenderbajusznak, hogyan tudná megmérni a láda teljes tömegét anélkül, hogy a láda lekerülne a kőről? A súrlódási együttható elég nagy, ezért kötelekkel meg tudják billenteni a ládát, ha a kőre nehezedő súly közben nem változik. A kötél súlya elhanyagolható. Távolságméréseket szabadon tudnak végezni. A kincsek nem mozoghatnak a ládában, mert zsúfolásig vannak tömve.

[1294] Bátki Zsolt2016-12-21 16:04:47

Látszólag könnyű kérdésnek tünik, lehet, hogy az is.

Egy magasugró 2 m-et ugrik a földön. (egyszerűség kedvéért, helyben ugrás, pontszerű, nincs légellenállás,stb) Mennyit ugrik a holdon ahol 1/6 g a nehézségi gyorsulás?

[1293] HoA2016-12-18 12:27:40

RE: Ez elméleti vagy gyakorlati feladat?

Elméletileg sem lehet az álló test ütközés utáni sebessége nagyobb a mozgó test eredeti sebességének kétszeresénél, még teljesen rugalmas ütközés esetén sem.

Teljesen rugalmas ütközés esetén az energia- és impulzusmegmaradás képletéből levezethető az \(\displaystyle m_1\) tömegű \(\displaystyle {v_1}\) sebességű és \(\displaystyle m_2\) tömegű \(\displaystyle {v_2}\) sebességű testek ütközés utáni \(\displaystyle {u_1}\) ill \(\displaystyle {u_2}\) sebessége. Az utóbbi

\(\displaystyle u_2 = \frac{(m_2 - m_1) v_2 + 2 m_1 v_1}{m_1 + m_2} \)

Példánkban \(\displaystyle v_2 = 0\), tehát \(\displaystyle u_2 = \frac{2 m_1 v_1}{m_1 + m_2} < \frac{2 m_1 v_1}{m_1} = 2 v_1\)

Előzmény: [1288] csábos, 2016-12-12 21:08:50
[1292] Sinobi2016-12-17 21:01:54

Ha van 2 térszerû eseményem, akkor van olyan megfigyelõ, aki szerint az egyik történt hamarabb, meg, olyan aki szerint a másik.

Igaz-e 3 vagy több eseményre, hogy tetszõleges permutációhoz létezik olyan szemlélõ, aki szerint olyan sorrendben következnek be az események?

[1291] jonas2016-12-15 10:37:24

1 m/s lehet, 2 m/s vagy nagyobb nem lehet.

Előzmény: [1290] HoA, 2016-12-14 16:38:20
[1290] HoA2016-12-14 16:38:20

Egy 1 m/s sebességgel mozgó 10 kg tömegű golyó beleütközik egy 1 kg tömegű álló golyóba. Lehet-e az álló golyó ütközés utáni sebessége 1 m/s, 2 m/s, 3 m/s?

Előzmény: [1289] jonas, 2016-12-13 00:54:22
[1289] jonas2016-12-13 00:54:22

1000 km/h lehet, 2000 km/h vagy még nagyobb nem lehet.

Előzmény: [1287] Sinobi, 2016-12-11 15:14:29
[1288] csábos2016-12-12 21:08:50

Ez elméleti vagy gyakorlati feladat?

Előzmény: [1287] Sinobi, 2016-12-11 15:14:29
[1287] Sinobi2016-12-11 15:14:29

Egy 1000km/h -val mozgó ágyúgolyó beleütközik egy álló puskagolyóba. Lehet-e a puskagolyó ütközés utáni sebessége 1000 km/h, 2000 km/h, 3000 km/h?

[1286] Alma2016-05-27 04:27:30

Szerintem a lokális extrémumot máshogy értelmezzük.

Megpróbálom még egyszer pongyolán: Egy görbén lokálisan minimális a megtételhez szükséges idő, ha a görbét infinitezimálisan megváltoztatva (de akár minden pontját egyszerre transzformálva), végpontokat fixen tartva, nem tudsz olyan görbéhez jutni, melyen kisebb lenne a megtételhez szükséges idő.

Kicsit egzaktabban: Paraméterezze &tex;\displaystyle s\in[0,1]&xet; a fény egy lehetséges folytonos görbéjét: &tex;\displaystyle \vec{f}(s)&xet;, vagyis &tex;\displaystyle \vec{f}&xet; megadja az &tex;\displaystyle x,y,z&xet; koorindátákat. A görbén lokálisan minimális a megtételhez szükséges idő, ha létezik olyan &tex;\displaystyle \epsilon&xet; pozitív szám, hogy tetszőleges, közeli &tex;\displaystyle \vec{g}(s)&xet; görbére, melyre &tex;\displaystyle |\vec{g}(s)- \vec{f}(s)|<\epsilon&xet; minden &tex;\displaystyle s&xet;-re, a megtételéhez szükséges idő hosszabb, mint az &tex;\displaystyle \vec{f}&xet; görbén. (kezdeti és végpontot fixen hagyva!)

A Fermat-elv tehát nem mondja ki, hogy a fény mindig egyenesen halad. Ha megfelelő módon változik a törésmutató pontról pontra, a fény terjedése akár köríven is történhet.

Ha több utat enged meg a Fermat-elv, akkor a fény ezek mindegyikén tud terjedni. Ha leteszel egy tárgyat a tükör elé, azt látod közvetlenül is, és a tükörben is. A fény a tárgyról több úton is el tud jutni a szemedbe.

A lézerfényt talán viszont úgy szerkeszteném meg én is, mint ahogy leírtad. Ott tudjuk, hogy merre indul el, és aztán alkalmazzuk a geometriai optikai szabályokat. Állandó törésmutató esetén egyenes vonalú terjedés, változó törésmutató esetén törés, stb...

Előzmény: [1285] Sinobi, 2016-05-26 20:26:49
[1285] Sinobi2016-05-26 20:26:49

Tehát akkor Fermat-elv, geometriai optikai változat:

> egy fénysugár útja lokálisan extremális, azaz az útjának bármely 2 elég közeli pontja között a lehető legrövidebb úton halad

(tehát mondjuk egy láncnak képzeled, aminek a szemeit mozgathatod ide-oda.. Ez így jó lesz?)

Ez megmagyarázza azt, hogy miért nem megy egyenesen (azaz görbén) A-ból B-be: mert a fénysugár egyenesen halad! Tegyük föl, hogy valahol hirtelen megtörik, abban a pontban nyilván ellentmond a Fermat-elvnek. A másik eset, hogy valami sima görbén kanyarodik, mondjuk körív mentén. (Ez miért és hogyan mond ellen a lokális extrémum elvének?)

És azt is megmagyarázza, hogy miért a piros úton megy tovább a sárga helyett (miért "képes" tetszőlegesen nagy szöggel megtörni).

És ugyanúgy alkalmazható utólagosan, "Mikor beért a célba már állíthatjuk, hogy a rendelkezésere álló utak közül a legrövidebb idejűt választotta." alapon: ha csak egyetlen ilyen út van A és B között akkor nyilván azon haladt. (Ha több ilyen tulajdonságú út is van?)

De alkalmazható induktív módon is, amikor a lézerből fénysugár útját akarjuk megszerkeszteni egy kilépő lézernyalábból: a Fermat-elv közvetlenül alkalmazva megadja nekünk a következő ezredmásodpercre hova ér, ha meg nem közvetlenül akarjuk, akkor levezethetjük belőle hogy egyenesen halad és szinuszosan törik.

Ez jó így?

Előzmény: [1276] marcius8, 2016-04-07 22:34:03
[1284] Alma2016-05-26 04:08:08

Fermat elv, angol Wiki.

Előzmény: [1283] Alma, 2016-05-26 03:50:33
[1283] Alma2016-05-26 03:50:33

Fermat elv

A kétrés kísérlettel csak óvatosan, az a fény hullám természetét kívánja demonstrálja. A Fermat-elv és az úgynevezett geometriai optika (amit középiskolában tanítanak) a hullámoptika klasszikus határesete. Viszonyuk pont olyan, mint a kvantummechanikának a klasszikus mechanikához.

A hullámoptika kimondja, hogy ha ki akarjuk számítani az X-ből Y-ba terjedő fény intenzitását, azt úgy tesszük, hogy az összes lehetséges útra a kettő között összegzünk egy, az úthoz rendelt komplex számot. A kitevőben ennek a komplex számnak nagyon gyorsan változik a fázisa, ha kicsit megváltoztatom az utat, de az abszolút értéke nem nagyon, ha közeliek az utak. Ez a fázis lényegében az út megtételéhez szükséges idővel arányos. Tehát minden úthoz valami ilyesmit számolunk ki:

&tex;\displaystyle C e^{i \phi} = C e^{2\pi i f \sum dt}, &xet;

ahol &tex;\displaystyle i&xet; a komplex egységgyök, &tex;\displaystyle f&xet; pedig a frekvencia. Ha sok egymáshoz közeli utat választok, és összeadom ezeket a járulékokat, olyan, mintha sok, véletlenszerű irányba mutató óramutatót adnék össze vektorosan. Ezek ki fogják oltani egymást, kivéve, ha az összes óramutató egy irányba mutat. Mikor mutatnak egy irányba? Ha kicsit megváltoztatva az utat (első rendben) nem változik a megtételhez szükséges idő, vagyis azon az úton a megtételhez szükséges idő extremális.

Így tehát geometriai optikában azt mondjuk, hogy csak ezeket az utakat vesszük, melyek megtételéhez szükséges idő lokálisan extremális. Ez a gyakorlatban szinte mindig lokális minimumot jelent, de trükkös elrendezésekben lehet maximum is.

A geometriai optika viszont soha nem fog semmit mondani a fény intenzitásáról. Két réses kísérletnél például az interferencia mintázat nem számítható ki geometriai optikával.

konkrét probléma

Szerintem hagyjuk a lézert, amelyik egy meghatározott irányban bocsát hatalmas intenzitást, tegyünk inkább oda egy macskát. Milyen irányba nézzünk a B pontból, hogy lássuk a macskát az A pontban? A válasz, hogy egy olyan irányba kell nézni, amit a geometriai optika megenged. Vagy direkt az A pont irányába, vagy a piros vonal mentén a prizmába. Bármely más irányba nézve nem fogjuk látni a macskát, mert lokálisan extremális út nem vezet arra a macskához.

A lézer esete kicsit trükkösebb. A lézer egy általunk meghatározott irányban, nagyon erős fénysugarat bocsát ki. Tegyük fel a prizmára világítunk, de nem a C pontba. Ettől még a lézert látni fogjuk, 2 irányban is, ugyanúgy, mint a macskát, csak a lézersugár nem érkezik a szemünkbe. Abban a speciális esetben, amikor a lézerrel a C pontba világítunk, akkor a lézer hatalmas intenzitása onnan a B pontba fog terjedni, és ha arra nézünk, megvakulunk. Ha nem arra nézünk, hanem direkt az A irányába, továbbra is csodálhatjuk a lézer szépségét. Ha meg teljesen másfele, akkor nem is fogjuk látni a lézert.

Előzmény: [1282] Sinobi, 2016-05-24 22:16:35
[1282] Sinobi2016-05-24 22:16:35

Azt hiszem, ezzel nem jutottunk előrébb. Jól látom, hogy ezzel a megfogalmazással nem lehet számolni, de legalább, ha úgy vesszük mindig igaz (tautológia)?

Nézzük marcius8 példáját: beért B-be, mégsem a legrövidebb úton tette. Az AB út nem állt rendelkezésre? Akkor a zöld-sárga-piros miért igen? Mikor és ki dönti el, hogy mi áll rendelkezésére? Akkor mit mond ki a Fermat-elv, ha nem ezt? Miért különleges a C pont? Az A pontban egy lámpa van, azt is üveg fedi... És ha a zöld-sárga utak "rendelkezésre állnak" akkor, ha az egyiket felgyorsítom (a közepére a prizma helyére vákuumot teszek), miért lesz hirtelen nem rendelkezésre álló út, és miért marad mégis a piroson?

Nem kötözködésből, tényleg érdekel, már ha tudod és érted. Megpróbálhatnád máshogy megfogalmazni az előzőt, amit írtál. Nekem az jött le, hogy azt állítod hogy a Fermat-elv március8-i megfogalmazása, miszerint a fény 360° fokban terjed és átlátja globálisan az egész univerzumot, igaz, de csak a C ponttól kezdve. Ha ez nem áll távol az igazságtól, akkor, megpróbálnád máshogy?

Előzmény: [1281] lorantfy, 2016-05-24 21:41:50
[1281] lorantfy2016-05-24 21:41:50

Ez egy utólag "ráhuzható tulajdonság". Mikor beért a célba már állíthatjuk, hogy a rendelkezésere álló utak közül a legrövidebb idejűt választotta. Mikor futottam egy két körös félmaratont és az eredményekből kiderült, hogy csak 1 sec különbség volt a két kör ideje között én is mondhattam, hogy pont így terveztem. :-)

Előzmény: [1279] Sinobi, 2016-05-21 22:23:39
[1280] Zilberbach2016-05-24 12:32:14

Milyen következményekkel járna a fizikában, ha kiderülne - hogy bizonyos körülmények között - az információ nem marad meg, hanem elvész?

[1279] Sinobi2016-05-21 22:23:39

> Onnantól, hogy eléri a prizmát a C pontban, azon az úton fog haladni, ami a legrövidebb időt jelenti a B pontig. Szóval "megoldja" azt a szélsőérték feladatot, hogy attól a ponttól, mekkora úton haladjon a lassabb közegben és mekkorán a gyorsabban.

És ha zöld vagy sárga út mentén valahol később mondjuk vákuum van, és arra menve mégis csak jobban járna mint a piros úton? Akkor is a piroson megy tovább...

Szóval nem jó magyarázat az, hogy a fény mégiscsak hirtelen átlátja a világegyetemet és választ egy globális minimumot (Fermat-elv) csak nem akkor amikor elindítjuk, hanem amikor a C pontba ér. (Lényegében ezt írtad?)

Előzmény: [1277] lorantfy, 2016-04-08 22:28:42
[1278] Sinobi2016-05-21 22:12:35

Nem hiszem, hogy ez egy fundamentális elv lenne.

Ha az is, akkor is nyilvánvalóan valami lokális minimumot "keres". (Például: bejárja az összes lehetséges útvonalat szimultán, és amelyek nem lokális minimumok, azok kiinterferálják egymást a francba, és megmarad a legrövidebb út)

Ha jól értem, akkor az a kérdésed, hogy a fény mikor "választ" saját maga utat, és mikor megy arra, amikor mi akarjuk?

Valószínűleg ugyanazok a feltételek mint például a két-rés kísérletnél meg az összes többinél (amit most nem tudok fejből).

Gondolom van valami (newtoni) hullámszétterjedési összefüggés, amelyik leírja a lehetséges útvonalakat, és azokból keres egy miniálisat? (Két-rés kísérletnél is csak akkor megy át mindkettőn, ha tud)

Ebben az esetben persze feltételeznünk kéne hogy fénytörésnél a lehetséges továbbmeneteli irányok halmaza, amiből a minimumot keressük, hirtelen a teljes félgömb lesz (pusztán azért mert áthalad egyik anyagból a másikba) ami feltételezés persze könnyen cáfolható.

Hajjaj, ez egyre rosszabb! ((..megint nem nekem kéne válaszolnom. Érettségin is részecskefizikát meg kegyelemkettest kaptam, azóta is csak felejtettem. De hol vannak a fizikusok?))

Előzmény: [1276] marcius8, 2016-04-07 22:34:03
[1277] lorantfy2016-04-08 22:28:42

Nem mond ellent. Ha az A pontban egy lézer fényforrásod van, akkor azt te irányítottad a prizma felé. Onnantól, hogy eléri a prizmát a C pontban, azon az úton fog haladni, ami a legrövidebb időt jelenti a B pontig. Szóval "megoldja" azt a szélsőérték feladatot, hogy attól a ponttól, mekkora úton haladjon a lassabb közegben és mekkorán a gyorsabban. A sárgával és zölddel jelölt utakhoz hosszabb idő kell. Ha meg egy olyan fényforrást helyezel az A pontba, amiből minden irányban indulnak fotonok, akkor azok közül lesz olyan, amelyik egyenesen a B felé tart és eléri azt, aztán olyan is ami a prizma alsó síkjáról visszaverődve éri el a B pontot, aztán egy olyan, ami az ábrának megfelelően a prizmán megtörve éri el a B. Ezeknél nyilván nem kell az időknek megegyeznie.

Előzmény: [1276] marcius8, 2016-04-07 22:34:03
[1276] marcius82016-04-07 22:34:03

Fermat-elv: A fény egy pontból egy másik pontba azon az úton jut el, amelynek megtételéhez a legkevesebb idő szükséges.

Tekintsük az alábbi ábrát! Ez az ábra egy fénytörést szemléltet, amikor is az „A” pontból kiinduló fény az üvegprizmán áthaladva a „B” pontba jut. Igen ám, de az „A” pontból a „B” pontba közvetlenül a két pontot összeköt egyenes mentén is eljuthatna a fény, ráadásul kevesebb idő alatt, mint az üvegprizmán keresztül. Nem mond ez ellent a Fermat-elvnek?

[1275] Alma2016-03-17 21:19:47

Pontosan! Magyarul ha jól tudom gravitációs vöröseltolódásnak hívják az effektust.

Előzmény: [1274] marcius8, 2016-03-16 12:00:17
[1274] marcius82016-03-16 12:00:17

Zseblámpával világítok a földszinten a 10. emeletre, mert kíváncsi vagyok, hogy mi történik ott. A zseblámpám fénye monokromatikus, 500 nanométer hullámhosszúságú fénnyel világít. Igen ám, de amíg a fény feljut a földszintről a 10. emeletre, a fény fotonjainak mozgási energiájának egy része helyzeti energiává alakul át. Vajon miből? A fotonok sebessége biztos nem változik, mert az marad fénysebesség. Akkor a fotonok frekvenciája, és így a fotonok színe változik?

[1273] redbaron2016-02-09 10:27:16

Koszonom szepen - ebben talaltam hasznos (szamomra ismeretlen) infot a fenysebesseggel kapcsolatban is - atragom magam rajta, mielott tovabb kerdeznek :-)

Előzmény: [1272] lorantfy, 2016-02-04 16:11:03
[1272] lorantfy2016-02-04 16:11:03

Coulomb törvény a mágneses póluserősségekkel. itt

Előzmény: [1271] redbaron, 2016-01-31 06:02:54
[1271] redbaron2016-01-31 06:02:54

Koszonom a valaszt A kovetkezo kerdes, amire nem talalok valaszt, hogy hogyan lehet ket magnes egymasra kifejtett erejet kiszamitani? Mindenhol csak a toltesekre kifejtett Lorentz erorol van szo...

Előzmény: [1270] Sinobi, 2016-01-30 00:49:29
[1270] Sinobi2016-01-30 00:49:29

Ha az erőre vagy kíváncsi, akkor az &tex;\displaystyle E \cdot q&xet; mindkét esetben, igen.

Előzmény: [1269] redbaron, 2016-01-28 17:27:38
[1269] redbaron2016-01-28 17:27:38

Lenne nehany kerdesem, amire szeretnek valaszt kapni, lehetoleg olyat, ami kozepiskolas szintet meg nem halado matematikai felkeszulessel is megertheto - olvasva a forumokat, biztosan van valaki, aki szivesen valaszol...

Az elso kerdesem, illetve allitas, amire inkabb megerositest varok: - a toltesek keltette elektromos mezo es a valtozo magneses fluxus altal gerjesztett elektromos mezo kozt nincs lenyegi kulonbseg, igaz? tehat egy toltes nem erzekeli, hogy az adott mezo orvenyes, vagy sem, egyszeruen 'elindul' az erovonalak menten...

Elore is koszonom mindenkinek, aki valaszra meltat.

[1268] Sinobi2015-12-11 23:22:59

Azt hiszem, ez alapján minden testhez létezik egy téglatest, hogy ugyanakkorák minden tengelyre a tehetetlenségi nyomatékaik.

Előzmény: [1265] Alma, 2015-11-21 00:50:29
[1267] Zilberbach2015-11-26 01:53:59

Az előző hozzászólásomban fölvetett kérdésre az lehet a válasz, hogy a kondenzátorból eltűnt energia egy része a fölső lemez közelítésére végzett munkára ment el - ugyanis az ellentétes töltésű lemezek vonzzák egymást - így ez a vonzóerő besegített a lemezek közelítésébe. A hiányzó elektromos energia másik része mechanikai feszültséggé alakult, ugyanis a közelebb került lemezek nagyobb erővel vonzzák egymást. Be kell látnom, mégsem cáfolta ez a példám Pej Nyihamér állításait.

Előzmény: [1266] Zilberbach, 2015-11-26 01:06:01
[1266] Zilberbach2015-11-26 01:06:01

Hogy a helyzet valószínűleg nem olyan egyszerű, mint ahogy azt Pej Nyihamér állítja, az alábbi példával szeretném bemutatni: Legyen egy kis fából készült asztalka, 1 x 1 m -es négyzet alakú asztallappal. Helyezzünk rá egy 1 x 1 m-es négyzet alakú réz-lemezt. Pontosan a rézlemez fölé 10 cm magasságban lógassunk föl egy másik, ugyanilyen réz-lemezt. A két lemez így egy kondenzátort alkot. Töltsük föl ezt a kondenzátort 100 v feszültségre. Ezután a fölső lemezt eresszük lassan lejjebb, annyira, hogy már csak 0,2 cm legyen a távolság a két lemez között. Ekkor a kondenzátor kapacitása a sokszorosára nő. Emiatt a feszültsége csökken. Emiatt a benne tárolt energia is csökken. De ebben az esetben nem is áramlottak az elektronok, nincs szó a vezetékek ellenállásáról vagy induktivitásáról, és mégis csökkent a kondenzátorban tárolt energia. Hová lett ebben az esetben a kondenzátor hiányzó energiája? Szerintem ez a föntiekben leírt eset hasonlít az előzőekben tárgyalt esethez, csak ott a kondenzátor kapacitása nem azáltal nőtt, hogy a lemezeit közelítettük egymáshoz, hanem azáltal, hogy párhuzamosan kapcsoltunk vele egy másik kondenzátort. De ebben az utóbbi példában már egyértelmű, hogy nem lehet a vezeték ellenálására, vagy induktivitására hivatkozni.

Előzmény: [1262] Pej Nyihamér, 2015-10-14 10:07:38
[1265] Alma2015-11-21 00:50:29

Nem hiszem. Gondolkodjunk csak gömbszimmetrikus objektumokban. Amit mérni tudsz ha jól értem az maximum két dolog ebben az esetben: az össztömeg és a tehetetlenségi nyomaték (ami minden a tömegközépponton átmenő egyenesre ugyanaz). A sűrűségeloszlásnak radiálisan viszont bármit vehetsz (ha jól értem?), nem írható le két paraméterrel az összes lehetőség.

Ha állandó a sűrűség, összefüggő a test, és össztömeget is tudsz mérni, akkor már nem igaz az érvelésem, mert két paraméterrel leírható az összes ilyen test (belső és külső sugár).

Előzmény: [1264] Sinobi, 2015-11-06 21:53:19
[1264] Sinobi2015-11-06 21:53:19

Meghatározzák-e a tömegközépponton átmenő egyenesekre vett nyomatékok a testet?

[1263] Feril2015-10-17 21:44:40

Köszönöm a segítséget

[1262] Pej Nyihamér2015-10-14 10:07:38

Köszönöm.

A [1253]-ban írtam egy levezetést arról, hogy a kiegyenlítődés közben az ellenálás pont akkora teljesítményt ad le, mint amilyen sebességgel csökken a kondenzátorok energiája. Szabad kételkedni, de akkor meg kell találni a levezetésben a hibát....

A rezgőkör dolog csak a szupravezetéses esetben érdekes, ha nincs ohmikus veszteség, akkor viszont az energia a mágneses mező létrehozására fordítódik. A mágneses mező csökkenése pedig feszültséget indukál, ezért nem áll le a folyamat a töltések kiegyenlítődésekor. Ha az önindukció kicsi, akkor az áramerősség, és vele a frekvencia lesz nagy. A rezgőkörökre vonatkozó törvények kicsi öndukció esetén is érvényesek.

Előzmény: [1261] Zilberbach, 2015-10-14 09:13:34
[1261] Zilberbach2015-10-14 09:13:34

Be kell látnom, a [1254] írásom sem jó válasz Feril kérdésére. Ferillel együtt, azonban továbbra is kételkedem abban, hogy a kondenzátor "eltűnt" energiája nagyrészt, vagy teljes egészében hővé alakul a vezeték ellenállásán. Természetesen az energia egy csekély részével ez megtörténik. Ha utána gondolsz beláthatod, hogy az általad az előzőekben leírt rezgőkör magyarázat sem működik. Túl kicsi a vezeték induktivitása a kondenzátor kapacitásához képest. Ezért a föltöltött kondenzátor elektronokban gazdag lemezéről csak addig áramlanak át elektronok a föltöltetlen kondenzátor vele összehuzalozott lemezére, amíg azonos potenciálra kerülnek, és akkor a folyamat azonnal leáll. Ezért szerintem továbbra is rejtély: hová lesz az energia.

Előzmény: [1260] Pej Nyihamér, 2015-10-14 07:07:16
[1260] Pej Nyihamér2015-10-14 07:07:16

Az eredeti kérdés az volt a [1242]-ben, hogy "hova távozik el az energia". Feril ugyanis kételkedett abban, hogy hővé alakul.

Te pedig azt állítottad, hogy amit írtam, a "válaszaim ... félrevisznek az igazi választól".

Tehát, a [1254] hogyan válaszolja meg a kérdést? Mi az "igazi" válasz? Hova távozik el a kondenzátorok energiájának egy része?

Előzmény: [1259] Zilberbach, 2015-10-13 23:09:48
[1259] Zilberbach2015-10-13 23:09:48

Szerintem a jelen esetben lényegtelen. A lényeg az, hogy a fél magasságra leengedett súly helyzeti energiája a felére csökken. Szerinted miért fontos a fékezési munka ezzel az állítással kapcsolatban?

Előzmény: [1258] Pej Nyihamér, 2015-10-13 21:26:06
[1258] Pej Nyihamér2015-10-13 21:26:06

Szerinted a fékezési munka egy lényegtelen részlet?

Előzmény: [1257] Zilberbach, 2015-10-13 19:45:31
[1257] Zilberbach2015-10-13 19:45:31

Valóban, kissé pongyolán fogalmaztam. Mondom akkor így: A 2m magasról 1m magasra leengedett test helyzeti energiája a felére csökkent, mert a nehézségi erő munkát végzett, miközben a test 2m magasról 1m-rel lejjebb került. Így pontosabb, de bonyolultabb egy kicsit. Hogy a leengedés közben folyamatosan, vagy a végén hirtelen fékezzük le, az teljesen mindegy: mivel fele olyan magasra került, a helyzeti energiája a felére csökkent - én csak ezt állítottam, és nem tértem ki a lényegtelen részletekre.

Előzmény: [1256] Pej Nyihamér, 2015-10-13 18:04:36
[1256] Pej Nyihamér2015-10-13 18:04:36

Az energia nem végez munkát, de ez csak a kisebbik baj.

Amikor azt mondod, hogy "engedjük le", az azt sugallja, hogy a súlyt esés közben fékezzük. Így a gravitációs erő mellett van egy fékező erő is. A gravitációs mező és a fékező rendszer (ami bármi lehet, rugó, másik test, amit felemelünk, súrlódás stb.) is munkát végez, az összenergiájuk állandó.

Ha nincs fékező erő, vagyis a súly szabadon esik, akkor a munkatétel szerint az esés után éppen akkora mozgási energiája lesz, mint amennyivel csökkent a helyzeti energiája. Az esés után tehát a súly mozogni fog; ha pedig mondjuk egy rugalmatlan ütközés során elveszti a sebességét és ezzel a mozgási energiáját, akkor ez az energia rendezetlenül szétszóródik a környezet része(cské)i között, vagyis hővé alakul.

Előzmény: [1254] Zilberbach, 2015-10-13 08:58:02
[1255] Zilberbach2015-10-13 10:15:50

Bocsánat, nem voltam igazán szabatos: 1m úton mozgatta az 1kg tömegű súlyt. Fiatalabbak kedvéért: régebben elterjedtek voltak az 1 kg tömegű öntöttvasból gyártott súlyok, az egyenlő-karú emelő elvén működő mérlegekhez használták. Ilyen 1kg-os súlyra gondoltam.

Előzmény: [1254] Zilberbach, 2015-10-13 08:58:02
[1254] Zilberbach2015-10-13 08:58:02

Feril kérdése teljesen jogos. Pej Nyihamér válaszai - bár nagyrészt igaz, amit ír - mégis félrevisznek az igazi választól. Megpróbálom egy mechanikából vett példával megvilágítani, hogy miért. Függesszünk föl egy 1 kg-os súlyt 2m magasan, majd engedjük le 1m magasságra. Hová lett a helyzeti energia fele? Munkát végzett, 1m úton mozgatta az 1kg súlyt. Ha egy föltöltött kondenzátorhoz párhuzamosan kapcsolunk egy másikat - ami nincs föltöltve - akkor megtörténik jónéhány elektron átmozgatása a kondenzátorok lemezei között, ami munkavégzést jelent. A látszólag eltűnt energia erre fordítódott. A való világban természetesen aztán bejön a vezeték ellenállása, elektromágneses rezgések keletkezése - de nem ez a válasz Feril kérdésére.

Előzmény: [1253] Pej Nyihamér, 2015-10-12 16:22:24
[1253] Pej Nyihamér2015-10-12 16:22:24

Tökéletes szupravezetés esetén, ha nem lenne veszteség a sugárzás miatt, akkor a rendszer tényleg a végtelenségig rezegne.

Abban, amit számoltam, feltételeztük, hogy a töltések már kiegyenlítődtek, és csak az energiaveszteség nagyságát számoltuk ki. Azt nem ellenőriztük, hogy az ohmikus ellenállás miatt tényleg annyi hő keletkezik-e, mint amennyi eltávozott.

Tehát, ha a kezdeti töltések &tex;\displaystyle Q_0&xet; és &tex;\displaystyle 0&xet;, és egy későbbi &tex;\displaystyle t&xet; pillanatban &tex;\displaystyle Q&xet; töltés már átvándorolt a második kondenzátorra, a töltések tehát &tex;\displaystyle Q_0-Q(t)&xet; és &tex;\displaystyle Q(t)&xet;, a továbbá elhanyagoljuk az önindukciót, akkor:

-- a két kondenzátor energiája &tex;\displaystyle E=\frac{(Q_0-Q)^2}{2C_1}+\frac{Q^2}{2C_2}&xet;;

-- a két kondenzátor közötti feszültség &tex;\displaystyle U=\frac{Q_0-Q}{C_1}-\frac{Q}{C_2}&xet;;

-- az áramerősség &tex;\displaystyle Q'=I&xet; (az Ohm-törvényből is kifejezhetnénk, de nem lesz rá szükség);

-- az ohmikus ellenállás által leadott teljesítmény &tex;\displaystyle P=UI=\left(\frac{Q_0-Q}{C_1}-\frac{Q}{C_2}\right)Q'&xet;.

Azt kell ellenőrizni, hogy &tex;\displaystyle E'+P=0&xet;, vagyis egységnyi idő allatt pont annyival csökken a kondenzátorok energiája, mint amennyi hőt az ellenállás lead. Íme:

&tex;\displaystyle E'+P = \left(\frac{(Q_0-Q)^2}{2C_1}+\frac{Q(t)^2}{2C_2}\right)' +\left(\frac{Q_0-Q}{C_1}-\frac{Q}{C_2}\right)Q'= &xet;

&tex;\displaystyle = \frac{-2(Q_0-Q)Q'}{2C_1}+\frac{2QQ'}{2C_2}+ \left(\frac{Q_0-Q}{C_1}-\frac{Q}{C_2}\right) Q' = 0. &xet;

Előzmény: [1251] Sinobi, 2015-10-11 22:33:25
[1252] Pej Nyihamér2015-10-12 15:37:49

(Nem véletlenül beszélünk látható és nem látható fényről...)

"Szóval szerinted a nagy áramerrőség miatt nem elhanyagolható a vezeték ellenállása..."

Nem. Nem értetted meg, amit írtam. A vezeték ellenállását akkor lehetne elhanyagolni, ha lenne a körben egy még nagyobb ellenállás vagy egy teljesen más hatás, ami mellett a vezeték ellállása eltörpül. De nincs, tehát számolni kell vele.

* * *

Az szupravezetős kérdésre már válaszoltam.

A hőveszteség mellett van egy másikfajta energiaveszteség is, az elektromágneses sugárzás. A kondenzátor és a vezeték együttvéve egy soros &tex;\displaystyle RLC&xet;-körnek is tekinthető, csak az &tex;\displaystyle L&xet; indukció borzasztó kicsi. Az önindukció miatt a folyamat nem áll le a töltések kiegyenlítődésekor, a rendszer átbillen egy ellenkező irányú állapotba, és a két irány között rezeg. Ha van ohmikus ellenállás, akkor a csillapítás miatt az átbillenés annyira pici, hogy nem érdemes folgalkozni vele.

Szupravezetés esetén viszont nincs ohmikus ellenállás, nincs melegedés, amihez képest a sugárzással elvesztett energia elhanyagolható lenne. Ilyenkor sem "plusz töltés" lesz a rendszerben, hanem plusz mágneses mező.

Előzmény: [1250] Feril, 2015-10-11 21:54:06
[1251] Sinobi2015-10-11 22:33:25

Engem az zavar, hogy ezek a képletek (kondenzátor feltöltődése, áram ide-oda vándorlása 0 ellenállású vezetőn) teljesen úgy néznek ki, mintha reverzibilis dolgokról szólnának.

Például számolsz valamit képletekkel, amelyek közül egyikben sem szerepel Ohmikus ellenállásból fakadó veszteség. Majd azt mondod, hogy ezekből levezettél valamit, amiben az megjelenik és az a fő tényező? *fejvakarcs*

(ezt a problémát tanultam én is, de már elfelejtettem azóta a feloldását)

Előzmény: [1249] Pej Nyihamér, 2015-10-11 20:56:53
[1250] Feril2015-10-11 21:54:06

A feladatban ami miatt kérdezem még különböző kapacitású kondenzátorok voltak azonban én már azonos kapacitású kondenzátorokkal számoltam ahol 50

(a fénynek inkább a látható spektrumu elektromágneses hullámokat nevezük úgy hogy ezt inkább hanyagoljuk most)

Szóval szerinted a nagy áramerrőség miatt nem elhanyagolható a vezeték ellenállása és teljesen lényegtelen hogy milyen az tulajdonságú a vezeték ha a két kondenzátor ugyan olyan kapacitású akkor a veszteség az eredeti energia 50

Ha ohmos ellenállás miatt kelletkezik a hő akkor szupra vezetővel ezt az energia veszteséget ki lehet akkor küszöbölni? Mert ha igen akkor a rendszerbe vagy plusz töltések kerülnek be vagy a Q,C,U-s képletek (Q=C*U , C=Q/U és U=Q/C képletekre gondolok) már nem lesznek érvényesek.

[1249] Pej Nyihamér2015-10-11 20:56:53

Az 50 százaléktól való eltérés nem az ellenállás miatt van, hanem azért, mert, mint írtad, a két kondenzátor különböző kapacitású. Ha ha a két kapacitás &tex;\displaystyle C_1&xet; és &tex;\displaystyle C_2&xet;, akkor a két párhuzamosan összekötött kondnezátor eredő kapacitása &tex;\displaystyle C_1+C_2&xet;. Ha az összes töltés &tex;\displaystyle Q&xet;, akkor a kondenzátorok energiája kezdetben &tex;\displaystyle \frac{Q^2}{2C_1}+0&xet;, a kiegyenlítődés után pedig &tex;\displaystyle \frac{Q^2}{2(C_1+C_2)}&xet;. Az arány nem &tex;\displaystyle \frac12&xet;, hanem &tex;\displaystyle \frac{C_1}{C_1+C_2}&xet;.

A fő energiaveszteség az ohmikus ellenállás miatt keletkező hő. Az ellenállás befolyásolja az áramerősséget és a kiegyenlítődés sebességét, de az az energiaveszteség nagysága nem függ az ellenállástól; az ellenállással fordítottan arányos az áramerősség, a kiegyenlítődés közben leadott teljesítnény, de egyenesen arányos vele a szükséges idő.

Mindenféle elhanyagolás csak relatív lehet; akkor lehet valamilyen hatást elhanyagolni, ha van valamilyen még erősebb, még nagyobb hatás. A jelen esetben nincs értelme a "vezeték elhanyagolható ellenállásáról" beszélni. Ezzel szemben lehet beszélni a kiegyenlődés közben kibocsátott elektromágneses sugárzással (ha tetszik, fénykibocsátással) vesztett energia elhanyagolásáról, mert a melegedéssel elvesztett energia sok-sok nagyságrenddel nagyobb.

Előzmény: [1248] Feril, 2015-10-10 19:45:32
[1248] Feril2015-10-10 19:45:32

"Tehát tudsz még hihetőbb választ?" Nem. De ha a vezeték elhanyagolható ellenállását figyelembe veszük akkor se pont 50%-os energia veszteség lenne. Főleg mert a vezeték ellenállása sok mindentől függ.

[1247] Pej Nyihamér2015-10-10 16:37:27

"... ez számomra nem a leghihetőbb."

Tehát tudsz még hihetőbb választ?

Az összenergia előtt számold ki a tölések eloszlását a két kondenzátoron. Nem fele.

Ha a nagyon kis ellenállású esetekkel akarsz játszani, akkor azt is figyelembe kell venned, hogy a kondenzátor(ok)nak a vezetékekkel együtt (mágneses) önindukciója is van; ha akarjuk, a rendszer egy csillapított (tökéletes szupravezetés esetén csillapítatlan) rezgőkör. Nem csak melegedés, hanem elektromágneses hullámok formájában is távozik energia.

Előzmény: [1242] Feril, 2015-09-25 22:44:38
[1246] Feril2015-10-10 14:37:12

Nem látta senki a kérdést vagy nem tudtok rá válaszolni? vagy most mi történt? Ha kvantumgravitációs kérdést tettem volna fel arra hamarabb és több választ kaptam volna.

[1245] Feril2015-10-04 15:16:56

Ha az energia a vezeték ellenállása miatt tünik le a rendszerből nem kéne az energia veszteséget befolyásolnia a vezeték tulajdonságainak? (hossz, keresztmetszet, anyag)

Ha a vezeték ellenállására megy el az energia akkor ha nem lenne ellenállás akkor összekapcsolás után úgy változna a feszültség hogy a két kondenzátor energiája összesen az eredeti kondenzátor energiájával egyezne meg.

Tehát a töltések az eredeti töltések számának a fele. A feszültség pedig az eredeti feszültségnél kisebb de az eredeti feszültség felénél nagyobb lesz?

[1244] Feril2015-09-26 11:08:08

Szupra vezetővel ki lehet küszöbölni ezt az energia veszteséget?

[1243] Feril2015-09-25 23:40:09

Ha csak a kapcsolás elötti töltött kondenzátort kisütjük 1 fogyasztón , és ha a kapcsolás utáni állapotott is kisütjük (sorosan és párhuzamosan(nem egyszere külön külön tehát 3 féle esetet vizsgálva)) egy fogyasztón ami legyen most egy motor akkor a menyiben, miben fog eltérni a motor elfordulása a 3 esetben?

Kisütésnél menyivel különböznek az értékek?

[1242] Feril2015-09-25 22:44:38

Hello. Fizika órán került elő ez a feladat. A helyes válasz meg van csak az indoklást nem tudom.

" Kérdés:Különböző kapacitású föltöltött és töltetlen kondenzátor lemezeit összekapcsoljuk. Válasz:A feltöltött kondenzátor kezdeti energiájának egy része eltávozik a rendszerből. "

Hova távozik el az energia? Olvastam olyat hogy hővéalakúl a vezeték ellenálásától függetlenül. De ez számomra nem a leghihetőbb.

Ebben az esetben a 2 kondenzátor energiája fele lesz a még össze nem kapcsolt töltött kondenzátor energiájának?

[1241] Zilberbach2015-08-18 09:15:00

Gondolj egy nyugalomban lévő föltöltött kondenzátorra.

Ha a fegyverzetei között lévő szigetelő lapot kicseréljük fémlapra, a kondenzátor azonnal kisül.

Előzmény: [1240] Sinobi, 2015-08-17 12:39:07
[1240] Sinobi2015-08-17 12:39:07

Pontosan. Egy beállt statikus rendszerben már nincs jelentősége, hogy vezeték van-e a tér adott pontján, vagy szigetelő. (egyik Maxwell-egyenlet sem vonatkozik erre)

Előzmény: [1239] NA, 2015-08-14 22:37:59
[1239] NA2015-08-14 22:37:59

Ha a kép jobb oldalán lévő esetben a vezetéket elvágjuk akkor az árnyékoló hatás továbbra is meg marad?

http://vili.pmmf.hu/jegyzet/elektrom/Image473.gif

[1238] NA2015-07-20 16:14:59

Hello. Arra vagyok kíváncsi hogy ha egy fémburkon kívűl és belül is van töltés és a fémburkot leföldeljük akkor kialakul-e árnyékolás és hogy milyen a töltés megoszlás a fémburokban?

[1237] Loiscenter2015-06-22 23:39:15

Köszönöm szépen a segitségedet. Ha az egyik bogár lesz az origó, akkor a rasiranyuló bogar mozgása egyenletesen egyenes. De bizonytalan vagyok a grafika kapcsolataban !

Előzmény: [1236] w, 2015-06-21 13:59:49
[1236] w2015-06-21 13:59:49

A feladat eléggé egyszerű és nagyon szép, érdemes egyedül rájönni, de ha segítség érdekel: mit csinál az A bogár a B bogárhoz képest?

(Ugyanez a feladat egyébként Gnädig-Honyek-Vigh: 333 furfangos feladat könyvének 4. feladata, csak szabályos háromszögre. Ott a megoldásban megadják a bogarak/rakéták/csigák pályáját is.)

Előzmény: [1235] Loiscenter, 2015-06-21 13:42:10
[1235] Loiscenter2015-06-21 13:42:10

Segitsetek a következö feladatot a gimnaziumi feltkészültség szinten:

Negy bogar (A, B, C es D) all egy 10 cm oldalhosszusagu negyzet egy-egy sarkaban. Egyszerre megindulnak: A bogar B fele maszik, B bogar C fele, C bogar D fele, es D bogar A fele. Mind a negyen allando es egyforma sebesseggel masznak,minden időpillanatban a masik bogar fele. (Nem az eredeti, hanem az aktualis helye fele!) Milyen palyat irnak mozgasuk soran? Mekkora utat tesznek meg fejenkent, mire - a kiindulasi negyzet kozeppontjaban - talalkoznak?

[1234] Bátki Zsolt2015-04-21 22:04:36

Ezt most vettem észre:

A százforintos érmét vonzza a mágnes. A másodikat, ha hozzáillesztem már nem. Próbáljátok ki. Kérdés, miért nem? (Ui: nem tudom)

[1233] marcius82015-04-21 17:37:17

Akár vákuummal töltött tartályt is el tudok képzelni...., Csak akkor a földi légnyomás beroppantaná ezeknek az izé-bizéknek az oldalát.... És akkor még nem beszéltünk arról,hogy ezeket a masínákat hogyan kormányozzák. Tényleg, vajon hogyan kormányozzák ezeket a masinákat? Mert ezeken a masinákon egy darab propeller nincs, az tuti!

Előzmény: [1232] HoA, 2015-04-20 15:10:57
[1232] HoA2015-04-20 15:10:57

Re: ilyen hatalmas nagy dög repülőszerkezeteket elég nehéz lenne csak a levegő felhajtóerejével fenntartani

Dehogyis nehéz! Csak még hatalmasabb, mondjuk hidrogénnel töltött tartályra ( ballonra ) kell akasztani. Innen már csak ügyes fényképezés kérdése (de mi az egy amerikai operatőrnek) , hogy a ballon és/vagy a tartókötelek ne legyenek láthatóak a filmen.

Előzmény: [1231] marcius8, 2015-04-20 13:30:36
[1231] marcius82015-04-20 13:30:36

Esetleg olyan megoldás, amelyet mi is meg tudnánk valósítani? Pl. levegő felhajtó erejének felhasználásával, csak ilyen hatalmas nagy dög repülőszerkezeteket elég nehéz lenne csak a levegő felhajtóerejével fenntartani. Vagy pl. propellerekkel? Csak a fimben ezeken a herkentyűkön egy propeller sem látszik. Amúgy az antigravitációs megoldást hogyan tudnánk meghatározni, és egyáltalán mi az antigravitációnak a lényege?

Előzmény: [1230] lorantfy, 2015-04-18 18:03:32
[1230] lorantfy2015-04-18 18:03:32

Antigravitáció. Ezekben a filmekben ez egy megszokott megoldás. :)

Előzmény: [1229] marcius8, 2015-04-18 10:25:22
[1229] marcius82015-04-18 10:25:22

Biztosan sokan látták a FÜGGETLENSÉG NAPJA című filmet. Aki nem látta volna, annak elmondom, hogy ez a film arról szól, hogy egy távoli civilizáció megtámadja a Földet., és természetesen van valaki (lehetőleg amerikai), akinek egy zseniális ötletének segítségével legyőzik ezeket a gonosz földönkívülieket. Kérdésem: Milyen módszerrel tudták ezek a gonosz földönkívüliek megvalósítani azt, hogy azok a hatalmas (több kilométer átmérőjű) csészealj alakú űrhajóik több napig a levegőben, a földfelszíntől pár száz méter távolságban lebegjenek? Ha valaki tud erre egy jó ötletet, az a kérésem, hogy írja meg. (Nekem is van elképzelésem.) Tisztelettel: Bertalan Zoltán.

[1228] Hajba Károly2015-04-13 23:08:03

Tudjuk tapasztalatból, hogy ha szivárványt látunk, akkor mögöttünk van a nap.

De lehetséges-e olyan, hogy előttünk van?

[1227] Sinobi2015-03-15 20:48:35

Egy merev ABCD négyzet csúcsaiban m tömegű súlyok vannak, az AC átlója körül forog (&tex;\displaystyle \omega&xet; pici).

Lerobbantom az A-C csúcsban levő súlyokat a négyzetemről a négyzet aktuális síkjára merőlegesen, egymással ellentétes irányba. (v sebességet kapnak).

Mit tudok mondani eztán a forgásról? Például igaz-e, hogy az új forgástengely a régi tengellyel és v,-v-vel egy síkba kerül? Hogy az új &tex;\displaystyle \omega^,&xet; szögsebessége megegyezik az előzővel?

Hogyan-merre indulok, ha nem teszem fel a perdület megmaradását?

(ha segít, fel lehet tenni hogy az A-C csúcsokban maradnak még súlyok. Bár nem nagyon tudok ehhez hozzányúlni, de az én szemléletemet bántja ha nem lennének ott tömegek, és mégis valami értelmes mozgást végezne)

Illetve: akinek van ötlete ennél egyszerűbb konstrukcióra azt vizsgálni hogy mi történik ha egy forgó rendszert kitérítünk a síkjából, az azzal is segíthet. (Folytonos erőhatással talán még kevésbé lehet kezdeni, ha az erőhatás iránya változik a négyzet síkjával azért, ha fix, akkor azért) Mondjuk ha az én konstrukciómban nem, akkor egy olyat, amiben a forgási sík és a szögsebesség szépen változik.

[1226] Zilberbach2015-01-11 20:56:43

Kedves Lorántfy!

Nagyon köszönöm a kérdésre adott válaszaidat.

Előzmény: [1225] lorantfy, 2015-01-10 10:31:54
[1225] lorantfy2015-01-10 10:31:54

Kvantumpontok - szemléletes ábrával

[1224] lorantfy2015-01-10 10:19:32

Ismert, hogy a fénycsövekben a gázatomok ütközésekor keletkező fotonok nagy része UV. A fénycső belső felületén lévő festékanyag részecskéit az UV fotonok gerjesztik. A gerjesztett elektronok viszont több ugrásban térnek vissza az alapállapotukba és közben létható fényt sugároznak ki. Ennek ellenére a fénycső fénye nem mondható "fehérnek", szóval nincs teljes spektrum. 4-5 fő vonalból áll a színképe. Ez volt a ráhangoló bevezetés. A kijelzőkben használt AMOLED paneleknek is hasonló a problémájuk. A megvilágító háttérfény nem elég "fehér", szóval vonalas a színképe. Ennek kiküszöbölésére azt találták ki, hogy a megvilágító LED panel és az LCD réteg közé egy speciálisan kezelt optikai filmet helyeznek el. Ez a QDEF réteg: Quantum Dot Enhancement Film. A filmrétegre több milliárd, eltérő méretű nanokristályt (kvantumpontot) visznek fel, amelyeket a háttérvilágítás fénye gerjeszt. A nanokristályok ennek hatására méretüktől függően különböző hullámhosszú fényt bocsátanak ki (a nagyobb részecskék hosszú, a kisebbek pedig rövidebb hullámhosszú fényt jelentenek), melyeket jó arányban keverve széles spektrumú fehér fény nyerhető. Tehát javul a háttérvilágírás minősége. Közelebb kerül a teljes látható spektrumhoz, amiatt jobbak lesznek a színek.

Előzmény: [1221] Zilberbach, 2015-01-08 21:10:00
[1222] Fálesz Mihály2015-01-09 12:59:55

Szerintem olyasmi lehet, mint az alumínium-gumi ötvözet. Semmi értelme, de egykori műegyetemisták beszámolója szerint a hadseregnél egyesek meg tudták úszni a gázálarc sikálását, ugyanis sikerült az őrmestert meggyőzni arról, hogy a lerakódott kosznak látszó anyag valójában védő oxidréteg, amit nem szabad a gumi felületéről eltávolítani.

Ugyanilyen a tévében reklámozott arcszesz, amiben az alkoholt hűsítő érzéssel helyettesítették.

Előzmény: [1221] Zilberbach, 2015-01-08 21:10:00
[1221] Zilberbach2015-01-08 21:10:00

Néhány TV-gyártó "kvantumpont tecnológiával" működő képernyőkkel árulja a TV-készülékeit. Ha valaki értlemesen el tudná magyarázni ennek a lényegét, és a működését, azt nagyon megköszönném. Valószínűleg másokat is érdekelne ez, rajtam kívül is.

[1220] marcius82015-01-07 09:40:00

Egyszer régen egy messzi-messzi galaxisban két "M" tömegű csillag egymástól "d" távolságra van. Mekkora és milyen irányú kezdősebességgel kell a két csillag által meghatározott szakasz felezőpontjából indítani egy "m" tömegű mesterséges holdat, hogy az a két csillag körül egy "nyolcas" alakú pályán keringjen? Az egyszerűség kedvéért feltesszük, hogy a két csillag fixen le van rögzítve, azaz nem esnek egymás felé és nem keringenek az általuk meghatározott szakasz felezőpontja körül.

[1219] marcius82014-11-19 09:20:45

Egy újabb kérdés: Azt tudjuk, hogy rögzített töltés körül egy másik töltés parabola-, ellipszis-, hiperbola- pályán kering, ha a másik töltésre csak a nyugvó töltés hat, ugyanis a mozgó töltésre a nyugvó töltés olyan erőt fejt ki, amelynek nagysága fordítottan arányos a két töltés közötti távolság négyzetével. Ugyanígy a Naprendszerben egy bolygó a Nap körül ellipszispályán (parabolapályán?, hiperbolapályán?) keringenek, mert a Nap erre a bolygóra olyan erőt fejt ki, amelynek nagysága fordítottan arányos a Nap és a bolygó közötti távolság négyzetével.

1. Kérdés: Egy végtelen hosszú egyenletes töltéssűrűségű egyenes szigetelő huzal elektromos terében egy töltés mozog a huzalra merőleges síkban. Milyen lesz a töltés pályájának alakja? Tudjuk, hogy ekkor a huzal olyan erőt fejt ki a mozgó töltésre, amelynek nagysága fordítottan arányos a huzal és a töltés távolságával.

2. Kérdés Egy vízszintes síkon egy elhanyagolható tömegű és elhanyagolható hosszú rugó egyik vége a sík egy adott pontjában rögzítve van, a rugó másik végéhez egy test van rögzítve, amely a vízszintes síkon súrlódás és más energiaveszteség nélkül mozoghat. Kezdetben a test nyugalomban van, és a rugó is nyújtatlan állapotban van. Milyen pályán mozog ez a test, ha valamilyen irányú sebeséggel meglökjük? Feltehetjük, hogy ekkor a a mozgó testet pályán tartó erő egyenesen arányos a sík adott pontja és a mozgó test közötti távolsággal.

Általános kérdés: Egy rögzített test körül egy másik test kering. Milyen alakú pályán kering ez a másik test, ha tudjuk, hogy a rögzített test erre a másik testre egy olyan erővel hat, amelynek nagysága arányos a két test közötti távolság "n"-ik hatványával.

[1218] marcius82014-11-19 09:01:55

Köszi a linket ALMA, megnéztem és nagyon tetszik. Viszont ezzel kapcsolatban egy konkrét kérdés: Tegyük fel, hogy a síkbeli koordináta-rendszerben egy fényforrás van a "P0(x0;y0)" koordinátájú pontban, amely "f0" frekvenciájú (színű) fényt sugároz. Ebben a koordináta-rendszerben az "x"-tengelyen haladok a tengely pozitív irányába "v" sebességgel. Milyen szögben és milyen távol látom a fényforrást amikor éppen az origón keresztül haladok át. (Azt hogy milyen színűnek látom a fényforrást, ki tudom számolni.) Segítséged előre is köszönöm: Bertalan Zoltán.

Előzmény: [1217] Alma, 2014-11-11 22:00:10
[1217] Alma2014-11-11 22:00:10

Most sajnos nekem nem lesz időm erről a nagyon érdekes kérdésről hosszas választ írnom, de küldök egy hasznos linket, ami nekem nagyon tetszett. Van egy (magam által írt) Mathematica programom is ami egy végtelen távoli gömbbön felvett forrásokat transzformál mozgó megfigyelő rendszerébe. Ha érdekel valahogy megoszthatom veled, könnyen átírható kockára valószínűleg.

Előzmény: [1214] marcius8, 2014-11-05 08:54:55
[1216] marcius82014-11-11 13:40:35

Mindenkinek köszönöm az eddigi türelmét és tanácsait..... Egy újabb kérdést sikerült kreálnom: Van-e N4 molekula, azaz van-e olyan négyatomos csak nitrogén-atomból álló molekula, melynek atomjai egy szabályos tetraéder csúcsaiban helyezkednek el, és ebben a molekulában minden atom a többi atommal egyszeres kovalens kötést létesít. Elvileg egy ilyen N4 molekulában minden N-atom vegyértékhéja telített. Tisztelettel: Bertalan Zoltán.

[1215] HoA2014-11-05 15:39:36

A kérdés a relativisztikus hatások figyelembe vétele nélkül is érdekes: A kocka előlapjának melyik helyzetéből kiinduló fénysugár ér a szemembe egyszerre a hátlapjából most kiindulóval? Ebben a pillanatban az x irányú élek egyes pontjainak mikori - hol található - képét látom?

Előzmény: [1214] marcius8, 2014-11-05 08:54:55
[1214] marcius82014-11-05 08:54:55

Még egy kis relativitáselmélet: Tegyük fel, hogy ott álok a koordináta-rendszer origójában, és hirtelen meglátok egy kockát. A kocka élei párhuzamosak a koordináta-rendszer megfelelő tengelyeivel és 3 millió kilométer hosszúak. A kocka tőlem 1,5 millió kilométer távol van. A kocka 240000 km/sec sebességgel mozog az "x" tengellyel párhuzamosan. Hogyan látom ezt a kockát? Mindenki válaszát előre is köszönöm! Bertalan Zoltán.

[1213] Nagypapa2014-11-05 07:54:01

Igazán szép, "tanári" rávezetés :)

Előzmény: [1212] HoA, 2014-11-04 16:32:17
[1212] HoA2014-11-04 16:32:17

Segítek, de csak kérdésekkel, mert ez igazán csak a képletek gépies használata.

- Hány m/s a 144 km/h?

- Mennyi a gyorsulása ("a1") , ha 8 mp alatt álló helyzetből 144 km/h-ra gyorsul fel?

- Mennyi utat tesz meg egy 0 sebességről "a1" gyorsulással induló jármű 8 mp alatt? (=s1)

- Mekkora utat tesz meg egy 144 km/h sebességű jármű 20 mp alatt? (=s2)

- Mekkora a lassulás ("a2"), ha 144 km/h -ról 5 mp alatt megáll?

- Mekkora utat tesz meg egy "a2" lassulással 5 mp alatt megálló jármű? (=s3)

- Mennyi a 3 útszakasz összege? ( s1 + s2 + s3 )

Előzmény: [1211] Judyka0007, 2014-11-03 13:16:02
[1211] Judyka00072014-11-03 13:16:02

Sziasztok! Sajnos elakadtam a fizika házimban, tudna valaki segíteni?

Egy motoros álló helyzetből indulva 8 mp-ig állandó gyorsulással 144km/h sebességre gyorsul fel. Ezt a sebességet tartva 20mp-ig halad tovább, majd 5 mp alatt állandó lassulással megáll. Milyen távol állt meg a kiindulás helyétől, ha végig egyenes vonalban haladt?

[1210] marcius82014-10-08 08:28:31

Helyesbítek. Budó Ágoston tankönyvében a "G" mátrix úgy keletkezik az "F" mátrixból, hogy ahol az "F" mátrixban "E" térerősség szerepel, ott a "G" mátrixban "D" indukció van, és ahol az "F" mátrixban "H" térerősség szerepel, ott a "G" mátrixban "B" indukció van. Továbbá Nagy Károly tankönyvében csak az "F" mátrix szerepel, de ott csak "E" és "H" térerősség-komponensek szerepelnek a mátrixban. Nagy Károly ebben a tankönyvben következetesen él a "B= permeabilitás*H" és az "D=permittivitás*E" egyenletekkel, bár szerintem nem ártana, ha a permittivitás és a permeabilitás is mátrixok lennének. Nagy Károly a tankönyvében ráadásul nem SI hanem CGS mértékegység-rendszert használ, és a relativisztikus dinamikánál szerintem Budó Ágoston is CGS mértékegységben számol (konvertálás!!!!). Viszont, mint utólag észrevettem, Nagy Károly tankönyvében szerepel az elektromágneses mező Lorentz-tarnszformációja, szerintem egész érthetően. Szóval, ha ezt a részt hamarabb elolvasom, akkor talán nem írok a kömal-fórumba spec relativitáselméletet. Tisztelettel: Bertalan Zoltán.

Előzmény: [1209] marcius8, 2014-10-07 10:51:48
[1209] marcius82014-10-07 10:51:48

Budó Ágoston "Kisérleti Fizika 3"-ban van erről a "G" mátrixról szó, de szerintem Nagy Károly "Elektrodinamika" tankönyvében is szerepel ez a témakör. Tisztelettel: Bertalan Zoltán.

Előzmény: [1207] Alma, 2014-10-06 15:53:32
[1208] Alma2014-10-06 16:19:44

Illetve ha már ennyit beszéltünk az elektrodinamikáról, megkérdezem (Tőled, vagy bárki más érdeklődőtől), hogy milyen Lorentz-invariáns mennyiségeket tudsz alkotni az elektromágneses terekből? Kettő van tudtommal.

Előzmény: [1207] Alma, 2014-10-06 15:53:32
[1207] Alma2014-10-06 15:53:32

Tudnál erre hivatkozást küldeni? Én csak olyan definícióját ismerem ennek a "G"-nek, hogy az "F"-nek duálisa:

&tex;\displaystyle G_{\mu\nu} = \epsilon_{\mu\nu\alpha\beta}F^{\alpha\beta} &xet;

Itt &tex;\displaystyle \epsilon&xet; a Levi-Civita tenzor. G ebben az esetben úgy néz ki, mint F, csak E és B fordítva van benne.

Előzmény: [1206] marcius8, 2014-10-06 13:41:40
[1206] marcius82014-10-06 13:41:40

Esetleg meg lehetne gondolni azt is, hogy az "F" mátrixhoz hasonlóan lehet definiálni egy "G" mátrixot. A "G" mátrix abban különbözik az "F" mátrixtól, hogy ahol az "F" mátrixban "E" térerősség szerepel, ott a "G" mátrixban "H" térerősség van, és ahol az "F" mátrixban "B" indukció szerepel, ott a "G" mátrixban "D" indukció van. (Szokták is definiálni az "F" és "G" mátrixot.) Így az "F" mátrix segítségével ki lehet számolni a mozgó megfigyelő szerinti "E" térerősség-vektort és "B" indukció-vektort, a "G" mátrix segítségével ki lehet számolni a mozgó megfigyelő szerinti "H" térerősség-vektort és "D" indukció-vektort.

Előzmény: [1205] Alma, 2014-10-03 10:44:39
[1205] Alma2014-10-03 10:44:39

Hát ezen nem gondolkoztam még el nagyon. Szerintem leginkább vákuumban kell érteni a dolgokat, ott meg ekvivalens a kettő. A (D=permittivitás*E illetve B=permeabilitás*H) összefüggések pedig amúgy is csak közelítések közegben (kis terek, kis frekvenciák). A közeg sérti a Lorentz-invarianciát (kitűntet egy rendszert, mégpedig azt, amelyikben áll), így talán nem olyan hasznos a kovariáns formalizmus abban az esetben, és érdemes a közeg rendszerében dolgozni. Szerintem egyébként azért használták a B-t a H helyett, mert csak egy 1/c a mértékegység különbség az E és B között, és mint tudjuk, specrelben általában c=1. :) Először nem szerettem és idegennek találtam ezt a konvenciót, de nagyon hasznos.

Köszönöm a csokit! :)

Előzmény: [1204] marcius8, 2014-10-02 12:42:35
[1204] marcius82014-10-02 12:42:35

Köszönöm szépen a válaszodat ALMA, ez a válasz nekem így teljesen megfelel, számomra teljesen érthető, amit itt leírtál. Ezért egy virtuális boci-csokit küldök, persze nem relativisztikus tömegnövekedéssel. Most egy-két számolást elvégzek, de egy kérdés még mindig van. Adott pontban az "E" és "H" térerősség-vektorok nem függnek a pontban levő anyag fizikai jellemzőitől, míg adott pontban a "D" és "B" indukcióvektorok függnek a pontban levő anyag fizikai jellemzőitől. (D=permittivitás*E illetve B=permeabilitás*H) Az "F" mátrix elemei így a pontbeli anyag tulajdonságaitól nem függő "E" komponenensek és a pontbeli anyag tulajdonságaitól függő "B" komponenensek. Ez nem probléma a Lorentz-transzformációnál? Válaszodat előre is köszönöm. Tisztelettel: Bertalan Zoltán.

Előzmény: [1223] Alma, 2014-10-01 14:53:03
[1223] Alma2014-10-01 14:53:03

1. A számokat nem nagyon néztem eddig, de jogos, a megfigyelő ne mozogjon c-vel.

2. A négyesvektor 0. komponense a teljesítmény az adott koordinátarendszerben. Mit jelent, ha egy testre ható erő teljesítménye negatív?

3. Hát megtanítani a specrel formalizmusát egy hozzászólásban nem fogom tudni teljesen, de pár dolgot leírhatok. Kétszer szereplő görög indexekre mindig összegezz, 0tól 3ig. A kettősindex egyik tagja mindig felül van, a másik mindig alul. Az alapvető mennyiség ugye a koordináta-négyesvektor &tex;\displaystyle x^{\mu}=(ct,x,y,z)&xet;, amely a következőképp transzformálódik:

&tex;\displaystyle x'^{\mu}=\Lambda^{\mu}_{..\nu}x^{\nu},&xet;

ahol

&tex;\displaystyle \Lambda^\mu_{..\nu}=\left(\matrix{ch\chi & -n_1 sh\chi & -n_2 sh\chi & -n_3 sh\chi \cr -n_1 sh\chi & 1+n_1n_1(ch\chi-1) & 0+n_1n_2(ch\chi-1) & 0+n_1n_3(ch\chi-1) \cr -n_2 sh\chi & 0+n_2n_1(ch\chi-1) & 1+n_2n_2(ch\chi-1) & 0+n_2n_3(ch\chi-1) \cr -n_3 sh\chi & 0+n_3n_1(ch\chi-1) & 0+n_3n_2(ch\chi-1) & 1+n_3n_3(ch\chi-1) } \right),&xet;

így az előző tömör jelölés a következőt jelöli:

&tex;\displaystyle \left(\matrix{ct' \cr x' \cr y' \cr z'}\right)= \left(\matrix{ch\chi & -n_1 sh\chi & -n_2 sh\chi & -n_3 sh\chi \cr -n_1 sh\chi & 1+n_1n_1(ch\chi-1) & 0+n_1n_2(ch\chi-1) & 0+n_1n_3(ch\chi-1) \cr -n_2 sh\chi & 0+n_2n_1(ch\chi-1) & 1+n_2n_2(ch\chi-1) & 0+n_2n_3(ch\chi-1) \cr -n_3 sh\chi & 0+n_3n_1(ch\chi-1) & 0+n_3n_2(ch\chi-1) & 1+n_3n_3(ch\chi-1) } \right) \left(\matrix{ct \cr x \cr y \cr z}\right)&xet;

Figyelj az indexek helyére, fontos. Indexek helyét a &tex;\displaystyle g^{\mu\nu}=diag(1,-1,-1,-1)&xet; és &tex;\displaystyle g_{\mu\nu}=diag(1,-1,-1,-1)&xet; metrikus tenzorral tudod változtatni:

&tex;\displaystyle x_{\mu}=g_{\mu\nu}x^{\nu}=(ct,-x,-y-z).&xet;

Ezt hasonlóan minden Lorentz-kovariáns mennyiséggel meg tudod tenni. Így például

&tex;\displaystyle \Lambda_\mu^{..\nu}=g_{\mu\tau}\Lambda^\tau_{..\rho}g^{\rho\nu}=\left(\matrix{ch\chi & n_1 sh\chi & n_2 sh\chi & n_3 sh\chi \cr n_1 sh\chi & 1+n_1n_1(ch\chi-1) & 0+n_1n_2(ch\chi-1) & 0+n_1n_3(ch\chi-1) \cr n_2 sh\chi & 0+n_2n_1(ch\chi-1) & 1+n_2n_2(ch\chi-1) & 0+n_2n_3(ch\chi-1) \cr n_3 sh\chi & 0+n_3n_1(ch\chi-1) & 0+n_3n_2(ch\chi-1) & 1+n_3n_3(ch\chi-1) } \right)&xet;

Hasonlóan például

&tex;\displaystyle \Lambda^{\mu\nu}=\Lambda^\mu_{..\rho}g^{\rho\nu}=\left(\matrix{ch\chi & n_1 sh\chi & n_2 sh\chi & n_3 sh\chi \cr -n_1 sh\chi & -1-n_1n_1(ch\chi-1) & 0-n_1n_2(ch\chi-1) & 0-n_1n_3(ch\chi-1) \cr -n_2 sh\chi & 0-n_2n_1(ch\chi-1) & -1-n_2n_2(ch\chi-1) & 0-n_2n_3(ch\chi-1) \cr -n_3 sh\chi & 0-n_3n_1(ch\chi-1) & 0-n_3n_2(ch\chi-1) & -1-n_3n_3(ch\chi-1) } \right)&xet;

Szerintem ebben az esetben a legtisztább definiálni &tex;\displaystyle \Lambda^T&xet;-t is, ami egyébként a transzformáció inverze(&tex;\displaystyle \chi\rightarrow -\chi&xet;).

&tex;\displaystyle (\Lambda^T)^{\mu\nu}=\Lambda^{\nu\mu}=\left(\matrix{ch\chi & -n_1 sh\chi & -n_2 sh\chi & -n_3 sh\chi \cr n_1 sh\chi & -1-n_1n_1(ch\chi-1) & 0-n_1n_2(ch\chi-1) & 0-n_1n_3(ch\chi-1) \cr n_2 sh\chi & 0-n_2n_1(ch\chi-1) & -1-n_2n_2(ch\chi-1) & 0-n_2n_3(ch\chi-1) \cr n_3 sh\chi & 0-n_3n_1(ch\chi-1) & 0-n_3n_2(ch\chi-1) & -1-n_3n_3(ch\chi-1) } \right)&xet;

Ennek a mátrixnak is hasonlóan mozgathatod az indexeit:

&tex;\displaystyle (\Lambda^T)_{\mu}^{..\nu}=g_{\mu\tau}(\Lambda^T)^{\tau\nu}=\left(\matrix{ch\chi & -n_1 sh\chi & -n_2 sh\chi & -n_3 sh\chi \cr -n_1 sh\chi & 1+n_1n_1(ch\chi-1) & 0+n_1n_2(ch\chi-1) & 0+n_1n_3(ch\chi-1) \cr -n_2 sh\chi & 0+n_2n_1(ch\chi-1) & 1+n_2n_2(ch\chi-1) & 0+n_2n_3(ch\chi-1) \cr -n_3 sh\chi & 0+n_3n_1(ch\chi-1) & 0+n_3n_2(ch\chi-1) & 1+n_3n_3(ch\chi-1) } \right)&xet;

Asszem most már felírtam a &tex;\displaystyle \Lambda&xet; összes alakját, amit használok. Tetszőleges Lorentz-tenzort ezekkel a &tex;\displaystyle \Lambda&xet; mátrixokkal kell transzformálni. Tetszőleges 3 indexes tenzor transzformációja például:

&tex;\displaystyle T'^{\mu\nu\rho}=\Lambda^{\mu}_{..\alpha}\Lambda^{\nu}_{..\beta}\Lambda^{\rho}_{..\gamma}T^{\alpha\beta\gamma}&xet;

Tetszőleges &tex;\displaystyle (\mu\nu\rho)&xet; komponensét úgy tudod kiszámolni, ha &tex;\displaystyle (\alpha\beta\gamma)&xet; indexekre összegzel 0tól 3ig. Kétindexes tenzornál fel lehet ezt írni mátrixszorzások segítségével is:

&tex;\displaystyle F'^{\mu\nu}=\Lambda^{\mu}_{..\alpha}\Lambda^{\nu}_{..\beta}F^{\alpha\beta}=\Lambda^{\mu}_{..\alpha}F^{\alpha\beta}(\Lambda^T)_{\beta}^{..\nu}&xet;

A fent megadott reprezentációkat használva csak össze kell szorozni ebben az esetben a három mátrixot. Ennyit a formalizmusról.

A fizikáról annyit írok csak most, hogy be lehet látni, hogy az elektromos térerősség és a mágneses indukcióvektor együtt alkot egy antiszimmetrikus kétindexes tenzort, mégpedig az elektromos térerősségtenzort. Ennek komponensei

&tex;\displaystyle F^{\mu\nu}=\left(\matrix{0 & -E_x/c & -E_y/c & -E_z/c \cr E_x/c & 0 & -B_z & B_y \cr E_y/c & B_z & 0 & -B_x \cr E_z/c & -B_y & B_x & 0 } \right),&xet;

Az elektromágneses teret más koordináta-rendszerekben így tehát a következőképp kaphatod meg:

&tex;\displaystyle F'^{\mu\nu}=\left(\matrix{0 & -E'_x/c & -E'_y/c & -E'_z/c \cr E'_x/c & 0 & -B'_z & B'_y \cr E'_y/c & B'_z & 0 & -B'_x \cr E'_z/c & -B'_y & B'_x & 0 } \right)= &xet;

&tex;\displaystyle = \left(\matrix{ch\chi & -n_1 sh\chi & -n_2 sh\chi & -n_3 sh\chi \cr -n_1 sh\chi & 1+n_1n_1(ch\chi-1) & 0+n_1n_2(ch\chi-1) & 0+n_1n_3(ch\chi-1) \cr -n_2 sh\chi & 0+n_2n_1(ch\chi-1) & 1+n_2n_2(ch\chi-1) & 0+n_2n_3(ch\chi-1) \cr -n_3 sh\chi & 0+n_3n_1(ch\chi-1) & 0+n_3n_2(ch\chi-1) & 1+n_3n_3(ch\chi-1) } \right) \left(\matrix{0 & -E_x/c & -E_y/c & -E_z/c \cr E_x/c & 0 & -B_z & B_y \cr E_y/c & B_z & 0 & -B_x \cr E_z/c & -B_y & B_x & 0 } \right)* &xet;

&tex;\displaystyle *\left(\matrix{ch\chi & -n_1 sh\chi & -n_2 sh\chi & -n_3 sh\chi \cr -n_1 sh\chi & 1+n_1n_1(ch\chi-1) & 0+n_1n_2(ch\chi-1) & 0+n_1n_3(ch\chi-1) \cr -n_2 sh\chi & 0+n_2n_1(ch\chi-1) & 1+n_2n_2(ch\chi-1) & 0+n_2n_3(ch\chi-1) \cr -n_3 sh\chi & 0+n_3n_1(ch\chi-1) & 0+n_3n_2(ch\chi-1) & 1+n_3n_3(ch\chi-1) } \right)&xet;

Hogy melyik pontban kérdezed a tereket, az teljesen mindegy. Ha megadod egy adott rendszer &tex;\displaystyle x^{\mu}&xet; pontjában, akkor tetszőleges rendszer &tex;\displaystyle \Lambda^{\mu}_{..\nu}x^{\nu}&xet; pontjában ki tudod számolni (minden koordináta-rendszerben csak egy pontban, az eredetinek megfelelőben).

Előzmény: [1203] marcius8, 2014-10-01 11:54:47
[1203] marcius82014-10-01 11:54:47

Köszönöm szépen ALMA az eddigi segítségedet, nagyon tanulságosak voltak az eddigi írásaid!!! Annak idején az egyetemen tanítottak nekem az egyetemen speciális relativitáselméletet (általánost nem igazán), de ez csak elmélet volt, de ebből semmiféle feladatmegoldás nem szerepelt. Most utólag próbálom megérteni a speciális relativitás-elméletet egyszerűbb mintafeladatokon keresztül. Talán még másnak is tanulságosak ezek a mintafeladatok.

1. A legutolsó [1199] hozzászólásomat javítom: a megfigyelő, amely a nyugvó koordináta-rendszerhez viszonyítva "x" irányban 1/9*0,8c, "y" irányban 4/9*0,8c, "z" irányban 8/9*0,8c sebességgel halad. Ha az [1199] hozzászólásomat vesszük alapul, akkor a megfigyelő "c" fénysebességgel haladna.

2. Az [1198] hozzászólásomban mi a fizikai jelentése annak, hogy az "F" négyes erővektor komponense negatív?

3. Sokat segítenél azzal, ha konkrétan megmutatnád az [1200]-ban említett számolás menetét. Az [1199]-ban nem az origóban voltak megadva az elektromágneses térerősség-komponensek, hanem az origótól különböző pontban. A nyugvó koordináta-rendszerhez mozgó megfigyelőnek vajon mindegy-e, hogy a nyugvó koordináta-rendszer origójában ismertek az elektromágneses mező térerősség-komponensei, vagy a nyugvó koordináta-rendszer origójától különböző pontban. Az [1200]-ban közölt számításból ez nem derül ki, bár sejtésem szerint mindegy.

Segítségedet előre is köszönöm, maradok tisztelettel, Bertalan Zoltán.

Előzmény: [1201] Alma, 2014-10-01 11:16:30
[1202] Alma2014-10-01 11:50:12

Bocsánat, belekavarodtam az indexekbe. Helyesen az &tex;\displaystyle F'=\Lambda F \Lambda&xet; szorzatot kell kiszámolnod. Ami igaz, hogy &tex;\displaystyle (\Lambda^T)^{\mu}_{..\nu}\Lambda^\nu_{..\rho}=\delta^{\mu}_{..\rho}&xet;, de mindkét index pozíciójának megváltoztatása effektíve invertálja a &tex;\displaystyle \Lambda&xet; mátrixot. Ezt ellenőrizheted a &tex;\displaystyle \Lambda_{\mu}^{..\nu}=g_{\mu\tau}\Lambda^{\tau}_{..\rho}g^{\rho\nu}&xet; szorzat kiszámításával, ahol &tex;\displaystyle g=diag(1,-1,-1,-1)&xet;. Az egyik &tex;\displaystyle g&xet; az 1,2,3 sorok előjelét változtatja, a másik az oszlopokét, és lényegében így egy &tex;\displaystyle \chi\rightarrow -\chi&xet; transzformációt hajtanak végre.

Előzmény: [1201] Alma, 2014-10-01 11:16:30
[1201] Alma2014-10-01 11:16:30

Tehát effektíve az &tex;\displaystyle F'=\Lambda F \Lambda^{-1}&xet; mátrixszorzatot kell kiszámolnod.

Előzmény: [1200] Alma, 2014-10-01 11:15:04
[1200] Alma2014-10-01 11:15:04

Ehhez az elektromos térerősségtenzort kell ismerni. Azt a definíciót használd, ahol F indexei felül vannak.

&tex;\displaystyle F'^{\mu\nu}=\Lambda^{\mu}_{..\tau}\Lambda^{\nu}_{..\sigma}F^{\tau \sigma}=\Lambda^{\mu}_{..\tau}F^{\tau \sigma}(\Lambda^T)^{..\nu}_{\sigma}&xet;

A képletben a pontok semmit nem jelentenek, de csak így tudom megfelelő helyre tenni az indexeket (számít a sorrend melyik van elől illetve hátul). A &tex;\displaystyle \Lambda&xet; helyére az előző mátrixot kell írnod, míg &tex;\displaystyle \Lambda^T&xet; helyére az indexek ilyen állása szerint az előbbi mátrix inverzét kell írnod, amit legegyszerűbben a &tex;\displaystyle \chi \rightarrow -\chi&xet; helyettesítéssel kapsz meg.

Előzmény: [1199] marcius8, 2014-10-01 10:01:55
[1199] marcius82014-10-01 10:01:55

Egy nyugvó koordinátarendszerben a koordináta-rendszer (8;9;7) pontjában az elektromos térerősség-vektor E=(5V/m;3V/m;6V/m), ugyanebben a pontban a mágneses térerősségvektor H=(2V/m;7V/m;4V/m). Mekkora elektromágneses mezőt mér ebben a pontban az a megfigyelő, amely a nyugvó koordináta-rendszerhez viszonyítva "x" irányban 1c/9, "y" irányban 4c/9, "z" irányban 8c/9 sebességgel halad? ("c" a fénysebesség.) Minden segítséget köszönettel veszek. Tisztelettel: Bertalan Zoltán.

[1198] marcius82014-10-01 09:53:49

Köszönöm az útmutatást. Ha jól számoltam, az "F" négyes erővektor komponensei a másik koordináta-rendszerben: (-57N; F1=283/7N; F2=351/7N; F3=506/7 N). Tisztelettel: Bertalan Zoltán.

Előzmény: [1197] Alma, 2014-10-01 00:46:00
[1197] Alma2014-10-01 00:46:00

Gyorsan felvázolom a számolás menetét. A Lorentz-transzformáció 4x4-es mátrixa egy olyan koordináta-rendszerbe, mely &tex;\displaystyle v=c*tanh(\chi)&xet; sebességgel mozog az &tex;\displaystyle \vec{n}&xet; egységvektor által mutatott irányba a következő:

&tex;\displaystyle \Lambda^\mu_\nu=\left(\matrix{ch\chi & -\vec{n} sh\chi \cr -\vec{n} sh\chi & I_3+\vec{n}\circ\vec{n}(ch\chi-1)} \right)&xet;

Azt hiszem a félreértések elkerülése végett az lesz a legjobb, ha kiírom komponensenként:

&tex;\displaystyle \Lambda^\mu_{\nu}=\left(\matrix{ch\chi & -n_1 sh\chi & -n_2 sh\chi & -n_3 sh\chi \cr -n_1 sh\chi & 1+n_1n_1(ch\chi-1) & 0+n_1n_2(ch\chi-1) & 0+n_1n_3(ch\chi-1) \cr -n_2 sh\chi & 0+n_2n_1(ch\chi-1) & 1+n_2n_2(ch\chi-1) & 0+n_2n_3(ch\chi-1) \cr -n_3 sh\chi & 0+n_3n_1(ch\chi-1) & 0+n_3n_2(ch\chi-1) & 1+n_3n_3(ch\chi-1) } \right)&xet;

A te esetedben &tex;\displaystyle \vec{n}=(2/7,3/7,6/7)&xet;, valamint &tex;\displaystyle \chi=arctanh(0.6)&xet;. &tex;\displaystyle \chi&xet;-t rapiditásnak szokás hívni egyébként.

A feladat megoldásához azt kell még tudni, hogy az erőből és a teljesítményből egy négyesvektort lehet alkotni. Egy test impulzusa és energiája négyesvektort alkot: &tex;\displaystyle P^\mu=(E,\vec{p})&xet;, ezért az elszenvedő test sajátideje szerinti derivált is azt alkot: &tex;\displaystyle F^\mu = (dE/d\tau,d\vec{p}/d\tau)&xet;. Ez azt jelenti, hogy tetszőleges koordinátarendszerben úgy kapod meg a négyeserőt, hogy megszorzod a Lorentz-transzformáció mátrixával. Amit tehát ki kell számolnod, az a következő:

&tex;\displaystyle F'^{\mu}=\Lambda^\mu_\nu F^\nu,&xet; ahol &tex;\displaystyle F^{\mu}=(0,\vec{F})=(0,F_1,F_2,F_3).&xet; Sok sikert a számoláshoz!

u.i.: bocsánat, ha nem vagy járatos az index konvencióban. Ha egy betűn felső indexként van görög betű, akkor az "kontravariáns" négyesvektort jelent, elég azt ismerni. Az általam megadott &tex;\displaystyle \Lambda&xet; kontravariáns vektort kontravariánsra képez. Kétszer szereplő indexekre összegzünk. A formalizmus szerint simán össze kell szoroznod a megadott mátrixot a megadott F négyesvektorral. Eredmény egy olyan négyesvektor lesz, melynek "0." komponense lesz a teljesítmény, (1,2,3) komponense az erő a megadott koordináta-rendszerben.

Előzmény: [1196] marcius8, 2014-09-30 11:17:28
[1196] marcius82014-09-30 11:17:28

Köszönöm, hogy foglalkoztál a kérdésemmel. Az erővektor, amely valószínűleg egy testre hat, abban a koordináta-rendszerben (35N, 42N, 56N), amelyben a test nyugalomban van. Egy másik koordinátarendszer az előző koordináta-rendszerhez képest 0,6c sebességgel mozog (c: fénysebesség), mégpedig úgy hogy a sebesség x irányú összetevője 2/7*0,6c, a sebesség y irányú összetevője 3/7*0,6c, a sebesség z irányú összetevője 6/7*0,6c. Mekkorák az "F" erővektor koordinátái a másik koordináta-rendszerben? Tehát úgy értettem ezt a problémát, hogy van egy fix, ha úgy tetszik, egy nyugvó erővektor (vagy akármilyen vektor) egy koordináta-rendszerben. Így egyértelműbb a kérdésem: Hogyan transzformálódik ez a vektor Lorentz-transzformációval? Tisztelettel: Bertalan Zoltán

Előzmény: [1194] Alma, 2014-09-24 20:51:22
[1195] Alma2014-09-24 21:04:29

A speciális relativitáselmélet szerint

&tex;\displaystyle \Delta t=\frac{L*\sqrt{1-\frac{v^2}{c^2}}}{2(c-v)}-\frac{L*\sqrt{1-\frac{v^2}{c^2}}}{2(c+v)}=\frac{3L}{4c}=3s.&xet;

Remélem nem számoltam el.

Előzmény: [1192] marcius8, 2014-09-10 09:28:37
[1194] Alma2014-09-24 20:51:22

Azt mondanám attól függ, hogy mekkora a test sebessége, amire hat. Ha jól gondolom, akkor a teljesítmény és az erő négyesvektort alkot. Ha ismered a tested sebességét, amire hat, akkor tudod a teljesítményt, és Lorentz-transzformációval megkaphatod az erőt akármelyik koordináta-rendszerben.

Előzmény: [1191] marcius8, 2014-09-10 08:26:54
[1193] izsák2014-09-10 10:27:02

Melyik modell szerint várod a válaszokat?

Előzmény: [1192] marcius8, 2014-09-10 09:28:37
[1192] marcius82014-09-10 09:28:37

Feladat: Egy 1,2 millió km hosszú vonat 0,6c sebességgel halad (c: fénysebesség és a vonat álló helyzetben 1,2 millió km hosszú). A vonat közepén álló vasutas (tehát a vonattal együtt mozgó vasutas) két zseblámpáját egyszerre felkapcsolja. A vasutas egyik zseblámpája a vonat elejét világítja meg. A vasutas másik zseblámpája a vonat végét világítja meg. Nyilván a vasutas szerint a vonat elejéhez és a vonat végéhez a zseblámpák fénye egyszerre érkezik meg. De a vonat mellett, az állomásház teraszán álló bakter milyen időkülönbséggel látja a vasutas zseblámpáinak fényeit megérkezni a vonat elejéhez és a vonat végéhez?

[1191] marcius82014-09-10 08:26:54

Feladat: Egy koordináta-rendszerben egy "F" erővektor :(35N, 42N, 56N). Egy másik koordinátarendszer az előző koordináta-rendszerhez képest 0,6c sebességgel mozog (c: fénysebesség), mégpedig úgy hogy a sebesség x irányú összetevője 2/7*0,6c, a sebesség y irányú összetevője 3/7*0,6c, a sebesség z irányú összetevője 6/7*0,6c. Mekkorák az "F" erővektor koordinátái a másik koordináta-rendszerben?

[1190] Zilberbach2014-02-07 19:03:24

Adva van egy 200 x 200 mm-es, 2 mm vastag sík ezüstlap. Az egyik oldala tükörfényesre van polírozva (síktükör). Függőlegesen van fölállítva egy szobában. Az alsó és a fölső élére egyaránt egy ezüst drót van forrasztva, amik eltűnnek egy függöny mögött. A tükröt 1m-nél jobban nem szabad megközelíteni. A szobában rendelkezésre áll minden általunk szükségesnek vélt optikai műszer. Egymás után három mérés-sorozatot végezthetünk, közöttük 10 perc szünettel. Az egyik esetben a két ezüst drót egy jó minőségű földszondára van csatlakoztatva (földpotenciál). A másik esetben a két ezüst drót egy olyan gömb külső felületére van rögzítve ami a földpotenciálhoz képest mínusz 5 000 volt potenciálon van. A harmadik esetben a tükörre vezető drótok úgy vannak bekötve, hogy a tükrön 3 amper erősségű áram folyik. Meg tudjuk-e állapítani optikai eszközökkel, hogy mikor melyik esetről van szó? Lézerek, polariméterek, fény-visszaverődési tényezőt mérő műszerek, fényérzékelők, szögmérő stb. természetesen optikai eszköznek számítanak.

[1189] marcius82014-01-15 10:32:41

És mi történik ,ha a kismadár a doboz falán készít magáának egy ablakot, vagy ha a doboz hirtelen egy kalitkává (lyukas falú doboz) változik?

Előzmény: [1187] Hoborg, 2014-01-14 15:33:53
[1188] HoA2014-01-14 15:51:56

Video nélkül is: Gondoljuk végig, mi történik, ha

- a doboz a madár fajsúlyánál sűrűbb folyadékkal van tele ( a madár lebeg a vízen )

- a doboz a madár fajsúlyánál ritkább folyadékkal van tele ( a madár tempózva úszik )

- a doboz egyre ritkább folyadékkal van tele

- a doboz levegővel van tele

Előzmény: [1186] marcius8, 2014-01-14 10:20:34

  [1]    [2]    [3]    [4]    [5]    [6]    [7]