Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?

Fórum: Valaki mondja meg!

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]    [94]    [95]    [96]    [97]    [98]    [99]    [100]    [101]    [102]    [103]    [104]    [105]    [106]    [107]    [108]    [109]    [110]    [111]    [112]    [113]    [114]    [115]    [116]    [117]    [118]    [119]    [120]    [121]    [122]    [123]    [124]    [125]    [126]    [127]    [128]    [129]    [130]    [131]    [132]    [133]    [134]    [135]    [136]    [137]    [138]    [139]    [140]    [141]    [142]    [143]    [144]    [145]    [146]    [147]    [148]    [149]    [150]    [151]    [152]    [153]    [154]    [155]    [156]    [157]    [158]    [159]    [160]    [161]    [162]    [163]    [164]    [165]    [166]    [167]    [168]    [169]    [170]    [171]    [172]    [173]    [174]    [175]    [176]    [177]    [178]    [179]    [180]    [181]    [182]    [183]    [184]    [185]    [186]    [187]    [188]    [189]    [190]    [191]    [192]    [193]    [194]    [195]    [196]    [197]    [198]    [199]    [200]    [201]    [202]    [203]    [204]    [205]    [206]    [207]    [208]    [209]    [210]    [211]    [212]    [213]    [214]    [215]    [216]    [217]    [218]    [219]    [220]    [221]    [222]    [223]    [224]    [225]    [226]    [227]    [228]    [229]    [230]  

Szeretnél hozzászólni? Jelentkezz be.
[2290] nadorp2023-02-17 16:59:29

Elnézést kérek, de az előző hozzászólásban alábbi mondat nem igaz:

Az még elmondható, hogy \(\displaystyle b_n\) egy felső korlátja a mértani sor - bár már ehhez is hozzá kéne tenni , hogy ez a fenti limesz monotonitása miatt van

A \(\displaystyle b_{n,k}\) sorozat ui. csak elég nagy n-re kisebb a határértéknél, de ez nem nyilvánvaló állítás. Ezért is szerencsésebb a megoldásban tekintett másik sorozat, \(\displaystyle a_{n,k}\) vizsgálata, mert az monoton nő.

Előzmény: [2289] nadorp, 2023-02-17 14:37:55
[2289] nadorp2023-02-17 14:37:55

Az alábbi rész kérdőjeles:

\(\displaystyle \lim_{n\to\infty}\Bigg(\frac{n}{n+1}\Bigg)^n+\Bigg(\frac{n-1}{n+1}\Bigg)^n+\Bigg(\frac{n-2}{n+1}\Bigg)^n+\Bigg(\frac{n-3}{n+1}\Bigg)^n+\dots ?= e^{-1}+e^{-2}+e^{-3}+e^{-4}+\dots\)

Ha \(\displaystyle b_n=\Bigg(\frac{n}{n+1}\Bigg)^n+\Bigg(\frac{n-1}{n+1}\Bigg)^n+\dots+ \Bigg(\frac{1}{n+1}\Bigg)^n\)

akkor attól még, hogy a tagok "függőlegesen" konvergálnak, tehát hogy fix k-ra

\(\displaystyle \lim_{n\to\infty}\Bigg(\frac{n-k}{n+1}\Bigg)^n=e^{-k-1}\)

még nem következik, hogy az \(\displaystyle e^{-k-1}\) határértékek összege megegyezik \(\displaystyle b_n\) határértékével. Az még elmondható, hogy \(\displaystyle b_n\) egy felső korlátja a mértani sor - bár már ehhez is hozzá kéne tenni , hogy ez a fenti limesz monotonitása miatt van - de hogy oda konvergál-e, az nem következik az általad leírtakból.

Ha \(\displaystyle b_{n,k}=\Bigg(\frac{n-k}{n+1}\Bigg)^n\) ha \(\displaystyle 0\leq k \leq n\) és \(\displaystyle b_{n,k}=0\) ha \(\displaystyle k>n\), akkor azt állítod, hogy

\(\displaystyle \lim_{n\to\infty}\sum_{k=0}^nb_{n,k}=\lim_{n\to\infty}\sum_{k=0}^\infty b_{n,k}=\sum_{k=0}^\infty(\lim_{n\to\infty}b_{n,k})\)

Viszont a fenti határátmenet csere nem nyilvánvaló.

A "szabályos" eljárás az, ami sakkmath 2. megoldásában van (Tannery-tétel). A képletek (indexek) egyszerűbbek lesznek, ha sakkmath megoldását követve a \(\displaystyle \lim_{n\to\infty}\sum_{k=1}^{n}\left(\frac{k}{n}\right)^n=\lim_{n\to\infty}S_n\) határértékét számoljuk először ki, aztán osztjuk e-vel.

Minden \(\displaystyle n\geq1\) esetén legyen:

\(\displaystyle a_{n,k}=\Bigg\{\begin{matrix}\bigg(\frac{n-k}{n}\bigg)^n & 0\leq k\leq n \\ 0 & k> n \\ \end{matrix}\).

Ez egy végtelen mátrix, aminek a főátlójában - kivéve az \(\displaystyle a_{1,0}\) -és felette minden elem 0, a nulladik (azaz az első) oszlop csupa 1-es.

Bármely fix k-ra ismert, hogy az \(\displaystyle a_{n,k}\) sorozat monoton növekvő és határértékére

\(\displaystyle \lim_{n\to\infty}a_{n,k}=e^{-k} \tag{1}\)

Legyen \(\displaystyle \varepsilon>0\) rögzített. Mivel \(\displaystyle \sum_{k=0}^{\infty}e^{-k}=\frac{e}{e-1}=S\), ezért létezik K, hogy

\(\displaystyle \sum_{k=0}^{K}e^{-k}>S-\varepsilon \tag{2}\)

Másrészt (1)-ben a monotonitás miatt

létezik \(\displaystyle N_0\), hogy \(\displaystyle n>N_0\) esetén \(\displaystyle 1-a_{n,0}<\frac\varepsilon {K+1}\)

létezik \(\displaystyle N_1\), hogy \(\displaystyle n>N_1\) esetén \(\displaystyle \frac1{e}-a_{n,1}<\frac\varepsilon {K+1}\)

...

létezik \(\displaystyle N_K\), hogy \(\displaystyle n>N_K\) esetén \(\displaystyle \frac1{e^K}-a_{n,K}<\frac\varepsilon {K+1}\)

Így, ha \(\displaystyle N:=\max(K,N_0,...,N_K)\), akkor összeadva a fenti K+1 darab egyenlőtlenséget, \(\displaystyle n>N\) esetén teljesül

\(\displaystyle \sum_{k=0}^{K}e^{-k}-\sum_{k=0}^{K}a_{n,k}<\varepsilon\)

Felhasználva (2)-t is:

\(\displaystyle \varepsilon>\sum_{k=0}^{K}e^{-k}-\sum_{k=0}^{K}a_{n,k}> S-\varepsilon-\left(\sum_{k=0}^{n}a_{n,k}-\sum_{k=K+1}^{n}a_{n,k}\right)>S-\varepsilon-\sum_{k=0}^{n}a_{n,k}=S-S_n-\varepsilon\)

Azaz \(\displaystyle S-S_n<2\varepsilon\)

Előzmény: [2288] marcius8, 2023-02-16 22:28:25
[2288] marcius82023-02-16 22:28:25

Nekem így lett meg a határérték. Mondjuk nem túl precíz.....

\(\displaystyle \lim_{n\to\infty}\frac{1^n+2^n+3^n+\dots" +(n-2)^n+(n-1)^n+n^n}{(n+1)^n}=\)

\(\displaystyle \lim_{n\to\infty}\frac{n^n+(n-1)^n+(n-2)^n+(n-3)^n+\dots" +3^n+2^n+1^n}{(n+1)^n}=\)

\(\displaystyle \lim_{n\to\infty}\Bigg(\Bigg(\frac{n}{n+1}\Bigg)^n+\Bigg(\frac{n-1}{n+1}\Bigg)^n+\Bigg(\frac{n-2}{n+1}\Bigg)^n+\Bigg(\frac{n-3}{n+1}\Bigg)^n+\dots\Bigg)=\)

\(\displaystyle e^{-1}+e^{-2}+e^{-3}+e^{-4}+\dots\)=végtelen mértani sor=

\(\displaystyle \frac{e^{-1}}{1-e^{-1}}\)=\(\displaystyle \frac{1}{e-1}\)

Menet közben felhasználtam a következő határértéket:

\(\displaystyle \lim_{n\to\infty}\Bigg(\Bigg(\frac{n+a}{n+b}\Bigg)^n\Bigg)=e^{a-b}\)

[2287] marcius82023-02-16 21:59:33

Először is köszönöm Johnny 10 és Sakkhmath alapvetően segítő jellegű válaszait.

Én csak egy egyszerű határértékre kérdeztem, ami nem volt sürgős, március közepéig ráért. Persze azóta kaptam máshonnan segítséget, Johnny 10 hivatkozott egy Kömal-feladatra. Megnéztem én is az említett feladatot. Ott egy diofantoszi egyenletet kellett megoldani. Ha az egyenletet elosztom a jobb oldallal, akkor a jobb oldalon 1 van, a bal oldalon egy az, általam kérdezett sorozathoz hasonló jellegű sorozat van. Ha erről a hasonló jellegű sorozatról megmutatom, hogy konvergens, van határértréke, azzal még nem oldom meg a diofantoszi egyenletet. Ugyanis bármennyire is konvergens az a hasonló jellegű sorozat, még lehet nagyon sok (nem végtelen) olyan "kiugró" tagja, amelynek értéke mondjuk pl 1. Hogy tudjam használni a hasonló jellegű sorozat konvergenciáját, ahhoz az kell, hogy minden \(\displaystyle \epsilon>0\) értékhez találjak egy \(\displaystyle n\) értéket, ahonnan kezdve a sorozat minden tagjának a határértéktől vett eltérése \(\displaystyle \epsilon\)-nál kisebb legyen. Ez viszont egy újabb feladat, amit most nagy hirtelen nem tudnék megcsinálni. Akkor már jobb, ha azt mutatom meg a hasonló jellegű sorozatról, hogy szigorúan monoton csökkenő.

Mindenfajta személyeskedést elkerülve nem volt szándékom az említett versenyfeladat megoldására vagy annak egy részére rákérdezni, ezúton is bocsánatot kérek a szerkesztőségtől, a versenyzőktől és a versenybizottságtól. Tisztelettel: BZ.

Előzmény: [2282] Johnny 10, 2023-02-14 19:17:19
[2286] sakkmath2023-02-16 00:01:05

Lemma:

Az \(\displaystyle {\Large a_n}=\frac{\large 1^n+2^n+3^n+...+n^n}{\large n^n}\), n=1, 2, 3, … sorozat határértéke: \(\displaystyle \Large \lim_{n\to\infty}{\Large a_n}=\frac{\large e}{\large {e-1}}\).


A lemma első bizonyítása itt, a 2. pedig emitt található. (Az utóbbi webhelyen a Tannery-tételt és több alkalmazását tanulmányozhatjuk.)

Jelöljük \(\displaystyle {\Large b_n}\)-nel a \(\displaystyle {\large \bf [2275]}\)-ben megadott sorozat \(\displaystyle {\large n}\)-edik tagját; \(\displaystyle {\large n= 1, 2, 3, …}\)

Ekkor

Előzmény: [2275] marcius8, 2023-02-01 16:30:17
[2285] Johnny 102023-02-15 16:49:23

Akkor föloldom :) (Egyébként az előző hsz.e-mben elég hülyeség az egyenlet, ha valaki nézte (persze ez csak egy morzsája volt amúgy is a feladat megoldásának), valójában eredetileg természetesen a \(\displaystyle \bigg(\frac{3}{n+3}\bigg)^n+\bigg(\frac{4}{n+3}\bigg)^n+...+\bigg(\frac{n+2}{n+3}\bigg)^n\) kifejezést kell felülről becsülni, és ehelyett kell a csel.)

[2284] sakkmath2023-02-15 16:14:36

Föltenném, hogy én mire jutottam, de csak akkor, ha expressis verbis föloldottad a "lestoppolás"-odat...

Előzmény: [2277] Johnny 10, 2023-02-01 20:12:30
[2283] Lpont2023-02-14 19:45:47

"...így valószínűleg senkinek nem esett le..."

Dehogynem :)

Előzmény: [2282] Johnny 10, 2023-02-14 19:17:19
[2282] Johnny 102023-02-14 19:17:19

Még azzal tartozom, hogy leírjam, miért nem akartam, hogy valaki korábban feltegyen rá megoldást. A válasz egyszerű: a múlt hónapban lejárt B.5290. feladat. Ugyanis a határértékes feladatból elég sok mindent ki lehet találni a bizonyításhoz, igaz persze még így is nagy ötlet az általam ismert ilyen megoldásban (sajátom), hogy nem \(\displaystyle \bigg(\frac{3}{n}\bigg)^n+\bigg(\frac{4}{n}\bigg)+...+\bigg(\frac{n+3}{n}\bigg)^n\)-t kell felülről becsülni, hanem \(\displaystyle \bigg(\frac{1}{n}\bigg)^n+\bigg(\frac{2}{n}\bigg)^n+...+\bigg(\frac{n-1}{n}\bigg)^n,\) és utána a maradék tagokra egy újabb felső becslést kell bevetni, de egy ilyen megoldás megtalálásában sokat segíthetne ennek a felvetett kérdés megoldása. Mivel azonban nem akartam túl egyértelműen utalni arra, hogy ez releváns info a feladathoz, ezért lett belőle ez a talányos hozzászólás. (Az viszont érdekes, hogy én ezt úgy írtam, hogy biztos voltam benne, hogy aki követi a KöMaL-t, annak egyértelmű, hogy miért írtam a hozzászólást, mert nem hittem, hogy létezik az én megoldásomon kívül másfajta megközelítés. Pedig a hivatalos megoldást elnézve teljes indukció is elég, így valószínűleg senkinek nem esett le...)

Előzmény: [2279] marcius8, 2023-02-02 08:25:07
[2281] Lpont2023-02-02 18:42:49

Bocs, marcius8-nak szántam.

Előzmény: [2280] Lpont, 2023-02-02 18:41:07

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]    [94]    [95]    [96]    [97]    [98]    [99]    [100]    [101]    [102]    [103]    [104]    [105]    [106]    [107]    [108]    [109]    [110]    [111]    [112]    [113]    [114]    [115]    [116]    [117]    [118]    [119]    [120]    [121]    [122]    [123]    [124]    [125]    [126]    [127]    [128]    [129]    [130]    [131]    [132]    [133]    [134]    [135]    [136]    [137]    [138]    [139]    [140]    [141]    [142]    [143]    [144]    [145]    [146]    [147]    [148]    [149]    [150]    [151]    [152]    [153]    [154]    [155]    [156]    [157]    [158]    [159]    [160]    [161]    [162]    [163]    [164]    [165]    [166]    [167]    [168]    [169]    [170]    [171]    [172]    [173]    [174]    [175]    [176]    [177]    [178]    [179]    [180]    [181]    [182]    [183]    [184]    [185]    [186]    [187]    [188]    [189]    [190]    [191]    [192]    [193]    [194]    [195]    [196]    [197]    [198]    [199]    [200]    [201]    [202]    [203]    [204]    [205]    [206]    [207]    [208]    [209]    [210]    [211]    [212]    [213]    [214]    [215]    [216]    [217]    [218]    [219]    [220]    [221]    [222]    [223]    [224]    [225]    [226]    [227]    [228]    [229]    [230]