Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?
Matematika — Mintamegoldás

A C. 1832. matematika gyakorlat megoldása

Szerk

C. 1842. Oldjuk meg a valós számok halmazán a \(\displaystyle 9^x+(6x-23)\cdot 3^x+5x^2-39x+76=0\) egyenletet.

Javasolta:Bencze MihályBrassó

Megoldás. Az \(\displaystyle y=3^x\) jelölés bevezetése után oldjuk meg az \(\displaystyle x\) paraméterű, \(\displaystyle y\)-ra nézve másodfokú

\(\displaystyle y^2+(6x-23)\cdot y+5x^2-39x+76=0 \)

egyenletet a megoldóképlet alkalmazásával:

$$\begin{gather*} y_{1,2}=\frac{-(6x-23)\pm \sqrt{(6x-23)^2-4(5x^2-39x+76)}}{2}=\\ =\frac{-(6x-23)\pm \sqrt{16x^2-120x+225}}{2}=\\ =\frac{-6x+23 \pm \sqrt{(4x-15)^2}}{2}=\frac{-6x+23 \pm (4x-15)}{2}. \end{gather*}$$

Ebből \(\displaystyle y_1=-x+4\) és \(\displaystyle y_2=-5x + 19\).

1. eset: \(\displaystyle 3^x=-x+4\).

Mivel az \(\displaystyle f(x)=3^x\) valós számokon értelmezett függvény szigorúan monoton nő, illetve a \(\displaystyle g(x)=-x+4\) valós számokon értelmezett függvény szigorúan monoton csökken, így a két függvény grafikonjának legfeljebb egy metszéspontja van, vagyis az egyenletnek legfeljebb egy megoldása van. Az \(\displaystyle x=1\) pedig megoldás.

2. eset: \(\displaystyle 3^x=-5x+19\).

Az előzőekhez hasonlóan mivel az \(\displaystyle f(x)=3^x\) valós számokon értelmezett függvény szigorúan monoton nő, illetve a \(\displaystyle g(x)=-5x+19\) valós számokon értelmezett függvény szigorúan monoton csökken, így a két függvény grafikonjának legfeljebb egy metszéspontja van, vagyis az egyenletnek legfeljebb egy megoldása van. Az \(\displaystyle x=2\) pedig megoldás.

Ellenőrzések:

$$\begin{gather*} 9^1+(6\cdot1-23)\cdot 3^1+5\cdot1^2-39\cdot1+76=0,\\ 9^2+(6\cdot2-23)\cdot 3^2+5\cdot2^2-39\cdot2+76=0. \end{gather*}$$

Pánovics MátéPTE Gyak. Ált. Isk., Gimn. és Óv. Babits M. Gimn., 12. o. t.dolgozata alapján

Megjegyzés. Lényegében minden megoldó bevezette az \(\displaystyle y=3^x\) jelölést, amellyel az egyenlet a következő alakba írható át:

\(\displaystyle y^2+(6x-23)\cdot y+5x^2-39x+76=0. \)

A megoldás második lépéseként vagy szorzattá alakították az egyenlet bal oldalát, vagy megoldóképlettel megoldották mint paraméteres, \(\displaystyle y\)-ra nézve másodfokú egyenlet.

A megoldás befejezéséhez az \(\displaystyle x\)-re nézve exponenciális tagot is tartalmazó egyenleteket a bennük szereplő kifejezések monotonitására történő hivatkozással – amelyhez használhattak deriválást, vagy egyszerű függvénytani megfigyeléseket is a második lépéstől függetlenül – oldották meg. A megoldások ellenőrzésével tették végül teljessé a megoldást.

A feladatra összesen 43 versenyző és csapat küldött megoldást. 5 pontos 14, 4 pontos 21, 3 pontos 4, 2 pontos 1. 1 pontot 0, 0 pontot pedig 3 versenyző kapott.

Matematika — Mintamegoldás

A C. 1847. matematika gyakorlat megoldása

C. 1847. Az \(\displaystyle ABCD\) négyzet \(\displaystyle AD\) oldalán válasszuk ki úgy a \(\displaystyle P\) pontot, hogy \(\displaystyle CPA\sphericalangle=105^{\circ}\) legyen. A \(\displaystyle CP\) egyenesre az \(\displaystyle A\) pontból bocsássunk merőlegest, amelynek talppontját jelölje \(\displaystyle Q\). Határozzuk meg az \(\displaystyle ABQ\) és az \(\displaystyle ACP\) háromszögek területe arányának pontos értékét.

Javasolta:Bíró BálintEger

Fizika — Mintamegoldás

A G. 896. fizika gyakorlat megoldása

G. 896. Öt ellenállást kapcsolunk az ábra szerint egy 24 V-os feszültségforrás \(\displaystyle A\) és \(\displaystyle B\) kimenetére. Az ellenállások: \(\displaystyle R_1=40~\Omega\), \(\displaystyle R_2=50~\Omega\), \(\displaystyle R_3=R_4=10~\Omega\) és \(\displaystyle R_5=20~\Omega\).

a) Határozzuk meg az áramkör eredő ellenállását a kapcsoló zárt és nyitott állásában!

b) Mennyivel változik meg az \(\displaystyle R_4\) ellenállás teljesítménye, ha a zárt kapcsolót kinyitjuk?

(4 pont)

Közli: Veres Dénes, Szolnok

Matfund — Támogatás

Támogatás, adományozás

A KöMaL pontversenyeihez és Ifjúsági Ankétjához a MATFUND Alapítvány részére a Nemzeti Tehetség Program a 2024. július 1. és 2025. augusztus 31. közötti időszakra tizenhétmillió forint támogatást biztosított (NTP-TMV-M-24-M-0003).

A Nemzeti Kulturális Alap a KöMaL kiadását 1 900 000 forinttal (NKA-LAP), a 2023. október 29-30-án megrendezett KöMaL Ankét megszervezését 2 000 000 forinttal (NKA (201108/03268),továbbá a 2024. július első hetében megszervezett KöMaL nyári matematika és fizika tehetséggondozó tábor megrendezését 2 000 000 forinttal (201108/03268) támogatta. A nyári tábor idén sem jöhetett volna létre az AIT támogatása nélkül. Köszönjük továbbá a dombóvári Hotel Európának, hogy sokadik éve biztosít helyszínt táborunknak.

Pontverseny — Versenykiírás

Versenykiírás a KöMaL 2025–2026. évi pontversenyeire

Azok is figyelmesen olvassák el a Versenykiírást, akik tavaly már részt vettek versenyünkben.

Idén is matematikából, fizikából és informatikából indítunk versenyeket. Egyénileg, illetve csapatban is lehet versenyezni, a versenyek 9 hónapon keresztül, 2025. szeptemberétől 2026. június elejéig tartanak. Minden hónapban új feladatokat tűzünk ki, és a megoldásokat a következő hónap elejéig küldheted be. A verseny végeredményét a 2026. szeptemberi számunkban hirdetjük ki. A díjakat jövő ősszel, a KöMaL Ifjúsági Ankéton adjuk át.

Fizika — Cikk

Egy egyszerű egyenletmegoldó eljárás

Kevés az olyan egyenlettípus, amely zárt alakban megoldható, a legtöbb esetben valamilyen numerikus megoldáshoz kell folyamodnunk. Mindig lehetőségünk van a próbálgatásra, amit ügyesen végrehajtva megbízható eredményre juthatunk, de bizonyos esetekben a megoldás megkeresésére szisztematikus, könnyen automatizálható eljárás is a rendelkezésünkre áll. Az alábbiakban egy ilyet mutatunk be. Ez az

\(\displaystyle (1) \)\(\displaystyle x=f(x)\)

típusú egyenletek esetében alkalmazható, és az \(\displaystyle f(x)\) függvények egy széles osztályában eredményes. A módszer lényege, hogy az

\(\displaystyle x_{n+1}=f(x_n) \)

képzési szabály segítségével egy sorozatot generálunk.

A Lap — Legfrissebb szám

A KöMaL 2026. januári száma

Beszámoló — Eötvös-verseny

Beszámoló a 2025. évi Eötvös-versenyről

Az Eötvös Loránd Fizikai Társulat 2025. évi Eötvös-versenye október 17-én délután 3 órai kezdettel tíz magyarországi helyszínen került megrendezésre. Az ünnepélyes eredményhirdetésre és díjkiosztásra 2025. november 28-án délután került sor az ELTE TTK Eötvös termében. Megemlékeztünk az 50 és 25 évvel ezelőtti Eötvös-versenyről, ismertettük az akkori feladatokat és a győztesek nevét. Az 50 évvel ezelőtti díjazottak közül Virosztek Attila, a 25 évvel ezelőttiek közül Pozsgay Balázs volt jelen – ők röviden beszéltek a versennyel kapcsolatos emlékeikről és a pályafutásukról. Az 50 évvel ezelőtti II. díjas Zimányi Gergely videóüdvözletet, a 25 évvel ezelőtti I. díjas Buruzs Ádám pedig szöveges üzenetet küldött a jelenlévőknek.

Beszámoló — Rátz Tanár Úr életműdíj

Rátz Tanár úr életműdíj 2025

25. alkalommal adták át a Rátz Tanár úr életműdíjakat összesen nyolc kiváló tanár részére:

Kántor Sándorné, Dr. Pintér Klára, Ábrám László, Horváth Norbert, Karasz Gyöngyi, Nagy István, Bódis Bertalan, Mándics Dezső.

A kitüntetettek részletes bemutatása és az évente megújuló felhívás megtalálható a Rátz Tanár Úr Életműdíj hivatalos honlapján: https://www.ratztanarurdij.hu/

Beszámoló — Közélet

Beszámoló a 64. Rátz László Vándorgyűlésről

Idén Miskolc vendégül a matematikatanárok csapatát a Rátz László Vándorgyűlés keretei között. Négy szekcióban zajlottak a szemináriumok és az előadások, ezen kívül átadták a Bolyai János Matematikai Társulat Beke Manó Emlékdíjait és a Reményi díjakat az országos matematikaversenyeken kiváló eredményt elért tanulók tanárainak.

Fizika — Mintamegoldás

Az M. 443. mérési feladat megoldása

M. 443. Mobiltelefon fényérzékelőjét használva mutassuk meg, hogy a fényintenzitás inverz négyzetesen függ egy pontszerű fényforrástól mért távolságtól! Hogyan válasszuk a kísérleti körülményeket ahhoz, hogy minél pontosabban tudjuk igazolni ezt az összefüggést?

Közli: Vadász Gergely, Solymár