Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?

Fórum: Érdekes matekfeladatok

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]    [94]    [95]    [96]    [97]    [98]    [99]    [100]    [101]    [102]    [103]    [104]    [105]    [106]    [107]    [108]    [109]    [110]    [111]    [112]    [113]    [114]    [115]    [116]    [117]    [118]    [119]    [120]    [121]    [122]    [123]    [124]    [125]    [126]    [127]    [128]    [129]    [130]    [131]    [132]    [133]    [134]    [135]    [136]    [137]    [138]    [139]    [140]    [141]    [142]    [143]    [144]    [145]    [146]    [147]    [148]    [149]    [150]    [151]    [152]    [153]    [154]    [155]    [156]    [157]    [158]    [159]    [160]    [161]  

Szeretnél hozzászólni? Jelentkezz be.
[2802] leni5362008-12-28 15:10:48

Egyetértek, az ábra és a magyarázat nem egyeztethető össze. Az eredeti publikációjában található kép alapján is a B és D pontok környékén lesz a keresett különbség.

Forrás

Viszont nem értem, hogyan kerül ez az érdekes matekfeladatokhoz :P

Előzmény: [2801] lorantfy, 2008-12-28 11:44:00
[2801] lorantfy2008-12-28 11:44:00

Sziasztok!

A Römer-féle fénysebesség mérés elvéről van szó. Nézzétek meg a linkeket. Szerintem ez a magyarázat hibás! Éppen a B és D pontok környékén lesz különbség a hold eltűnési idejében. Sulinet és Corvus

[2800] Csimby2008-12-17 01:26:14

Sorry, p helyett legyen p+1 reguláris, tehát minden csúcs fokszáma p+1.

Előzmény: [2799] Csimby, 2008-12-17 01:15:34
[2799] Csimby2008-12-17 01:15:34

338.feladat Legyen G egy p-reguláris párosgráf, melynek mindkét osztályában p2+p+1 csúcs van, és nem tartalmaz 4 hosszú kört. Igaz-e, hogy bármely két egy osztályba tartozó csúcsnak pontosan 1 közös szomszédja van?

[2798] Káli gúla2008-12-15 19:53:49

''I don't know where it's from originally ...''   Úgy tudom, Ruzsa Imre fedezte fel, diák korában.

Előzmény: [2796] Lóczi Lajos, 2008-12-15 18:21:51
[2797] jenei.attila2008-12-15 18:50:13

Nem ismertem ezt a linket, sőt a feladatot is csak nemrég hallottam. Majd elolvasom, de azt javaslom a fórumtársaknak, hogy próbálják meg maguk megoldani. Nekem sikerült, nem is volt olyan nehéz, de nagyon jó kis tanulságos feladat ez. Állítólag még réges-régen egy spec. mat. szakos osztályban félévi ötös járt a megoldásáért.

Előzmény: [2796] Lóczi Lajos, 2008-12-15 18:21:51
[2796] Lóczi Lajos2008-12-15 18:21:51

http://cornellmath.wordpress.com/2008/01/22/periodic-functions-problem/

Előzmény: [2795] jenei.attila, 2008-12-15 11:07:58
[2795] jenei.attila2008-12-15 11:07:58

Előállítható-e a valós számokon értelmezett f(x)=x identitás fv. két periodikus fv. összegeként?

[2794] sakkmath2008-12-14 14:21:05

Talán ez a feladat?

Előzmény: [2792] zsizsike, 2008-12-14 10:59:21
[2793] sakkmath2008-12-14 13:34:37

Szia zsizsike! A jelöléseid számomra kibogozhatatlanok, hiányosak. Nem tudok rájönni, hogy mi a konkrét feladat. Kattints a bal oldal TeX tanfolyam gombjára, tanulmányozd a TeX minitanfolyamot és írd be helyesen a feladatot. A másik lehetőség arra az esetre, ha elektromos formátumban, pl. WORD/MathType-egyenletszerkesztővel már hibátlanul leírtad a feladatot: ekkor egy képkezelő program képernyőlopó funkciójával ("Capture screen", ha pl. XnView-et használsz) .gif-, vagy .jpg-képet készíthesz a példáról és felteheted (Ábra feltöltés). Üdv: sakkmath

Előzmény: [2792] zsizsike, 2008-12-14 10:59:21
[2792] zsizsike2008-12-14 10:59:21

sziasztok! van egy érdekes feladat előttem, de sehogy nem jövök rá, hogy hogyan lesz az eredmény annyi, amennyi le van írva megoldásként. Íme: lim/a gyök x -gyök a/x -a . Nos nem tudom, ebből hogyan lesz lim/a 1/gyök x + gyök a? Ha valaki tudja a választ, pontosabban a levezetést, akkor , kérem, segítsen. honnan kerül oda az 1, mert azt értem, hogy a reciprokkal szorzok, de innen hogy lesz az osztó 1?? lehet hogy még korán van? SOS!

[2791] sakkmath2008-12-13 17:37:47

Ezt hívják Schur-féle egyenlőtlenségnek, melynek bizonyítása itt olvasható.

Előzmény: [2789] Cogito, 2008-12-12 19:30:50
[2790] psbalint2008-12-13 16:07:07

337. feladat (remélem még nem volt, én nem tudtam megcsinálni) Mennyi maradékot ad 1980-nal osztva az 123456789101112...19781979 szám?

[2789] Cogito2008-12-12 19:30:50

336. feladat. Legyen t\ge0, x, y, z pedig pozitív szám. Bizonyítsuk be, hogy

xt(x - y)(x - z) + yt(y - x)(y - z)+ zt(z - x)(z - y)\ge0.

[2788] Lóczi Lajos2008-12-04 20:59:37

Sőt, bonyolultabban is megkapható :), pl. úgy, mint két ponthalmaz a síkon, ahol a kétváltozós távolságfüggvényt kell minimalizálni. Ennek a módszernek az "előnye", hogy a [2778]-as hozzászólásból a [2779]-esbeli feladatot gyártotta.

Előzmény: [2787] Valezius, 2008-12-04 15:05:49
[2787] Valezius2008-12-04 15:05:49

Egyszerűbben is megkapható.

Egyrészt ax=x Másrészt: ax*ln a=1 Ha a másodikban beírjuk ax helyére x-et, akkor x*ln a=1. Az első pedig átírható, mint ex*ln a=x Azaz e1=x Visszaírva pedig \ln a=\frac1e Azaz a=e^{\frac1e}

Előzmény: [2786] rizsesz, 2008-11-26 21:46:38
[2786] rizsesz2008-11-26 21:46:38

A feladat másképpen az, hogy x1/x = a-nak pontosan 1 megoldása legyen. x1/x deriváltja egyedül az x=e helyen 0 (már ha nem számoltam el, de nekem x1/x-2 * (1-ln x) jött ki. Ez pedig lokális (és amúgy abszolút) maximumot eredményez, tehát ezen érték mellett egy jó a érték van. Jaj. tehát vissza kell írni x helyére és kijön az a=e1/e . Jaj. Már csak azt a sejtést kell igazolni, hogy ha x a végtelenhez tart, akkor x1/x végtelenben vett határértéke 1. Ugyanis x1/x x=1 esetén 1, tehát mivel szigorúan monoton növekvő 1 és e, illetve szigorúan monoton csökkenő e és + végtelen között, továbbá folytonos, így az e-nél felvett értéken kívül minden értéket kétszer vesz fel.

Előzmény: [2775] Lóczi Lajos, 2008-11-25 23:48:43
[2785] ágica2008-11-26 18:01:46

a=e1/e.

Előzmény: [2775] Lóczi Lajos, 2008-11-25 23:48:43
[2784] Lóczi Lajos2008-11-26 17:51:43

Itt sem értek egyet: pl. az xex függvény nem szigorúan monoton növekedő (negatív x-ek esetén).

Előzmény: [2782] rizsesz, 2008-11-26 17:02:59
[2783] Lóczi Lajos2008-11-26 17:48:51

Sajnos ez ellentmondana a [2780]-as hozzászólásnak.

Előzmény: [2781] rizsesz, 2008-11-26 16:58:40
[2782] rizsesz2008-11-26 17:02:59

e x. hatványával és (-1)-gyel felszorozva olyan függvények összege lesz az egyenlet bal oldala, amelyek mindegyik szogorúan monoton növekvő. Mivel x=0 megoldás, továbbá eleme az értelmezési tartománynak, így ez az egyetlen megoldás.

Előzmény: [2779] Lóczi Lajos, 2008-11-26 00:33:28
[2781] rizsesz2008-11-26 16:58:40

a=e.

Előzmény: [2775] Lóczi Lajos, 2008-11-25 23:48:43
[2780] Euler2008-11-26 08:35:20

A távolsága a két függvénynek négyzetgyök 2, hiszen ezek egymás inverzei, igy mindkét függvénynek a távolsága megegyezik az y=x egyenestől ennek a távolságát pl. a logaritmusfüggvénytől már meg tudjuk határozni deriválással, mert a (0,1) pontba húzott érintő meredeksége éppen egy(könnyen ellenőrizhető), ezen érintő és az y=x távolságának kétszerese pedig éppen a keresett távolság. Az egyenletnek nyilván megoldása az x=0. Rendezzük át az egyenletet úgy, hogy az utolsó két tagot átvisszük a jobb oldalra, igy, ha x>0, akkor a bal oldal negativ, a jobb oldal pozitiv, hasonlóan, ha x<0, akkor a bal oldal pozitiv, a jobb oldal negativ, igy újabb megoldások már nincsnek.

Előzmény: [2778] Lóczi Lajos, 2008-11-26 00:29:09
[2779] Lóczi Lajos2008-11-26 00:33:28

335. feladat. Oldjuk meg a valós számok halmazán az

e-x-e2x-x-xex=0

egyenletet.

[2778] Lóczi Lajos2008-11-26 00:29:09

334. feladat. Határozzuk meg a (természetes alapú) exponenciális függvény és logaritmusfüggvény grafikonjainak távolságát.

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]    [94]    [95]    [96]    [97]    [98]    [99]    [100]    [101]    [102]    [103]    [104]    [105]    [106]    [107]    [108]    [109]    [110]    [111]    [112]    [113]    [114]    [115]    [116]    [117]    [118]    [119]    [120]    [121]    [122]    [123]    [124]    [125]    [126]    [127]    [128]    [129]    [130]    [131]    [132]    [133]    [134]    [135]    [136]    [137]    [138]    [139]    [140]    [141]    [142]    [143]    [144]    [145]    [146]    [147]    [148]    [149]    [150]    [151]    [152]    [153]    [154]    [155]    [156]    [157]    [158]    [159]    [160]    [161]