Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?

Fórum: Érdekes matekfeladatok

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]    [94]    [95]    [96]    [97]    [98]    [99]    [100]    [101]    [102]    [103]    [104]    [105]    [106]    [107]    [108]    [109]    [110]    [111]    [112]    [113]    [114]    [115]    [116]    [117]    [118]    [119]    [120]    [121]    [122]    [123]    [124]    [125]    [126]    [127]    [128]    [129]    [130]    [131]    [132]    [133]    [134]    [135]    [136]    [137]    [138]    [139]    [140]    [141]    [142]    [143]    [144]    [145]    [146]    [147]    [148]    [149]    [150]    [151]    [152]    [153]    [154]    [155]    [156]    [157]    [158]    [159]    [160]    [161]  

Szeretnél hozzászólni? Jelentkezz be.
[882] nadorp2005-04-25 12:29:33

Szia Csimby !

A \sum_{i=2}^{n+1}\frac1i\leq\int_1^{n+1}\frac1xdx=ln(n+1) egyenlőtlenség módszerére gondoltam. Ugyanis:

\frac{ln1 +ln2 + ... lnn}n\geq\frac1n\int_1^nlnxdx=\frac1n(nlnn-n+1)\geq{lnn-1},azaz \root{n}\of{n!}\geq\frac{n}e.

A fent kapott egyenlőtlenség már jó alap a feladatban a nemkorlátosság bizonyításához.

Előzmény: [881] Csimby, 2005-04-22 21:54:35
[881] Csimby2005-04-22 21:54:35

Kedves Nadorp! Ha még emlékszel rá, elmondod mire gondoltál?

Előzmény: [812] nadorp, 2005-03-01 12:15:48
[880] Lóczi Lajos2005-04-22 11:23:44

Valamely \alpha>0-ra tekintsük a sík azon (x,y) pontjait, amelyekre teljesül, hogy


|x|^\alpha+|y|^\alpha=1.

(Az \alpha=2 esetben nyilván egységkört kapunk, \alpha=\frac{2}{3}-ra asztroidot, stb.) Az \alpha=2 esetben a kapott alakzat kerülete 2\pi. Vajon lesz-e ezen kívül olyan \alpha, amelyhez tartozó alakzat kerülete szintén 2\pi? Ha igen, melyik/melyek ezek az \alpha\ne2 értékek?

[879] lorantfy2005-04-21 13:48:18

Kedves NádorP!

Kösz a megoldást! Régi Arany Dani feladat volt.

Előzmény: [878] nadorp, 2005-04-21 11:14:46
[878] nadorp2005-04-21 11:14:46

Jelentkező hiányában lelövöm a 160. feladatot.

Legyen x az a nyerőszám, amely bármely kettő nyerőszám összegének az osztója. Ekkor, ha y egy másik nyerőszám, akkor x | x+y miatt x| y is teljesül. Tehát x olyan nyerőszám, amely az összes nyerőszám osztója. Ebből következik, hogy 5x\leq90, azaz x\leq18. Másrészt, mivel x ismeretében az összes többi nyerőszám egyértelműen meghatározható, ezért 6x>90 is teljesül, azaz x>15. Így x=16,17,18 jöhet csak szóba. Mivel a paritás x-et meghatározza, ezért x=17. A nyerőszámok 17,34,51,68,85.

Előzmény: [877] lorantfy, 2005-04-18 22:42:47
[877] lorantfy2005-04-18 22:42:47

160. feladat: Mivel nagy nyeremény várható a lottón Mézga Aladár úgy döntött megkérdezi Köbükit, mik lesznek a nyerőszámok.

- A számokat nem mondom meg, de azt elárulhatom, hogy van köztük olyan szám amellyel bármely két nyerőszám összege osztható.

- Mi ez a szám?

- Ha megmondanám, akkor kitalálnád a nyerőszámokat.

- Legalább azt áruld el, páros vagy páratlan ez a szám.

A válasz után Aladár kitalálta a számokat, megjátszotta őket és nyert.

Mik voltak a nyerőszámok?

[876] Csimby2005-04-17 21:02:14

Ezt most találtam, Ramanujan egyik formulája. Csak érdekességnek rakom fel, szép nem?

[875] Hajba Károly2005-04-08 15:28:33

Kedves (mindent) tudniakarok!

Egy újszülöttnek minden vicc új, de nem a véneknek. :o) Szóval anno, valamikor a '90-es években valamelyik magyar ált. isk. diákjai lelkes matektanáruk irányításával egy nagyszabású kisérletet tettek a betetted feladat megvalósítására. Két napon keresztül többezer gyufaszálat v. akármit ejtegettek le több csoportba szerveződve. Ha jól emlékszem 2 tizedesjegy pontossággal ki is hozták a \pi értékét. Ez akkor világcsúcs volt.

Érdekes lehet az betett ábra egyéb formái is.

HK

Előzmény: [874] tudniakarok, 2005-04-08 14:11:29
[874] tudniakarok2005-04-08 14:11:29

Na ez érdekes,nagyon...

159.feladat: Tulajdonképpen a feladat nem más, mint egy kísérlet, amit egy Buffon nevű matematikus agyszüleményeként tartanak számon:

Felszereljük magunkat egy rövid, kb. 2 cm hosszú varrótűvel. /A varrótű végei legyenek letörve, és persze az a jó, ha hossza mentén egyenletes vastagságú/. Ez után egy papírlapon vékony párhuzamos vonalakat húzunk, amelyeknek egymástól való távolsága kétszer olyan nagy, mint a tű hossza. Ezután bizonyos (tetszés szerinti, de állandó) magasságból a tűt a papírra ejtjük és megfigyeljük, hogy metszi-e a tű a vonalak valamelyikét, vagy nem. Hogy a tű ne ugrálhasson, a papírlap alá itatóst vagy posztót teszünk.A tűdobálást sokszor megismételjük, (legalább százszor, ezerszer, vagy esetleg 28 milliószor) és minden alkalommal megnézzük, hogy volt-e metszés. (megj.: Metszésnek számít az az eset is, amikor a tű csak a hegyével érinti a vonalat.) Ha ezután a dobások számát elosztjuk a metszések számával milyen eredményt kapunk?

[873] Csimby2005-03-30 19:38:57

(9-6)*4=12, tehát 12 lyuk maradhat (nem 9) és szerintem az én hozzászólásomból is ez derült ki, amire válaszoltál...

Előzmény: [872] jonas, 2005-03-30 18:22:06
[872] jonas2005-03-30 18:22:06

Szerintem a 3×3-as felosztásból az is látszik, hogy legfeljebb 9 lyuk maradhat, tehát 11 dominó mellé mindig le lehet rakni még egyet. Egy 3×3-as sarokban ugyanis hat mezőt mindig le kell fedni ahhoz, hogy ne lehessen még egy dominót lerakni. Ez az eredmény megegyezik Gézáéval, és éles is, mert 12 dominó már meg tudja tölteni a táblát.

A A B
C C D B E
F F D E
G H I I
G J H K K
J L L
Előzmény: [852] Csimby, 2005-03-29 01:19:33
[871] tudniakarok2005-03-29 21:56:19

azaz ezért jó a tiéd nem pedig nem jó!na mind1

[870] tudniakarok2005-03-29 21:49:17

Bár ez meg pl 8-ra nem jó,mert ott X\geq\frac{64-1}{3} ebből X=21, amit irtál ott meg 22 jön ki (66/3)

[869] tudniakarok2005-03-29 21:39:43

Igazad lehet,sőt van!Belebonyolódtam az oszthatóságba!Ez is meg van!

[868] Csimby2005-03-29 21:26:48

Szerintem így jó:

N=k^2-2[\frac{k^2+2}{3}]+2

nem nagy változás...

Előzmény: [866] tudniakarok, 2005-03-29 20:07:52
[867] Csimby2005-03-29 21:17:59

k=4-re azt mondja, hogy legalább X=\frac{4^2-1}{3}=5 dominót el tudunk helyezni. De szerintem ez az érték 6 kéne, hogy legyen. Vagyis N=6 míg a képlettel N=42-2*5+2=8. Nekem gyanús, hogy k=5-re sem jó, vagyis akkor van baj, amikor k2-1 osztható 3-mal (k=2-re sem jó, míg k=3-ra, és k=6-ra, amikor k2-1 nem osztható 3-mal, olyankor jó).

Előzmény: [866] tudniakarok, 2005-03-29 20:07:52
[866] tudniakarok2005-03-29 20:07:52

Na akkor kxk-s táblára lerakható még egy dominó,ha N db mező szabad,és X-1 db dominó van lerakva: Kós Géza nyomán: 6X\geq2(k-1)2+4k-4 ,ebből

X\geq\frac{k^2-1}{3}

Minden term. szám négyzete vagy osztható 3-mal vagy 1 maradékot ad,ezért

X=\bigg[\frac{k^2+1}{3}\bigg] ez a legkevesebb dominó ,ami lerakható a táblára,azaz

k^2-2\bigg[\frac{k^2+1}{3}\bigg] helyünk marad miután az összeset leraktuk,ezért

N=k^2-2\bigg[\frac{k^2+1}{3}\bigg]+2

Nekem eddig minden próbálkozásnál összejött,de azért nem állítom hogy teljesen jó.

Előzmény: [864] levi, 2005-03-29 17:02:04
[865] Kós Géza2005-03-29 17:29:59

Helyezzünk el k darab dominót úgy, hogy több már ne férjen a táblára. Azt kell megmutatni, hogy k\ge12.

Számoljuk össze az olyan dominó-rácspont párokat, amikor a rácspont a dominó határán van.

a) Minden dominó határán 6 rácspont van, ez tehát összesen 6k pár.

b) A tábla belsejében levő 25 rácspont mindegyikének legalább két dominóhoz kell illeszkednie, különben még egy dominót odatehetünk mellé. A tábla kerületén levő rácspontokhoz is --- a sarkokat kivéve --- illeszkednie kell legalább egy-egy dominónak. Ilyen rácspontból 20 van. A párok száma tehát legalább 25.2+20.1=70.

Azt kaptuk, hogy 6k\ge70, vagyis k\ge12.

Előzmény: [863] tudniakarok, 2005-03-29 15:49:34
[864] levi2005-03-29 17:02:04

Az N számnak mindig párosnak kell lennie, nem? A k szám páros, k*k is páros, és ha elhelyezek egy dominót, akkor mindig 2-vel fog csökkeni, azaz páros lesz mindig a nem üres mezők száma is és a fedett mezők száma is. A sejtés azonban k=8 esetre ez alapján nem jó, mert akkor X=27, ami nem lehetséges.

Előzmény: [859] tudniakarok, 2005-03-29 15:23:03
[863] tudniakarok2005-03-29 15:49:34

Íme az én bizonyításom a saját feladatomra!: Úgy indulok,ahogy Csimby:Osszuk fel a 6x6-os táblát 4db 3x3-as négyzetre! Mivel 14 mező fedetlen,ezért van olyan résztábla amelyen 4 fedetlen mező van.Megmutatjuk hogy ezen résztáblán van 2 szomszédos mező!Legyen a résztábla a táblázat jobb felső sarka! Tegyük fel hogy az állítással ellentétben nincs 2 szomszédos mező! Ekkor az A B C betűkkel jelölt mezők nem lehetnek fedetlenek,hisz akkor a közbezárt mező is fedetlen volna. Hasonlóan nem lehetnek fedetlenek az x-szel jelölt mezők sem,hiszen akkor C sarokmező is fedetlen volna. Vagyis a bal oldali 2x3-mas táblarészen legalább 4 mező le van fedve,így legfeljebb 2 mező lehet fedetlen! Emiatt az alsó sorban kell lenni 2 fedetlen mezőnek. Feltevésünk szerint nics 2 szomszédos mező,tehát ez a 2 csak a két szélső lehet. Tehát E és F biztosan nincs lefedve. Ebből viszont adódik,hogy a szürke mezőknek fedettnek kell lenni,különben volna 2 szomszédos fedetlen mező. Ugyanakkor az A és C mezők közötti mezőnek is fedettnek kell lenni. Ezt viszont nem lehet megtenni,mert ez a dominó az A B C mezők egyikét lefedné,így nem maradhatna 4 fedetlen mező! Ellentmondásra jutottunk,tehát van két szomszédos fedetlen mező!

[862] levi2005-03-29 15:45:07

Bocs, már megint nem fogalmaztam pontosan, szóval N az üres mezők száma, de szerencsére valaki rá tudott jönni...

[861] tudniakarok2005-03-29 15:26:31

ÁÁÁÁÁÁÁ! Ne!!! Igazad van Csimby 14 mező fedetlen vissza az egész,de még ma beírom az én bizonyításom is

[860] tudniakarok2005-03-29 15:24:25

De ha gondolod beírhatom az én bizonyításom is mert csak a vezérfonal ugyanaz,mint a tiéd,de hát az a lényeg

[859] tudniakarok2005-03-29 15:23:03

Úgy látom mindenkit félreértek!Bocs! Levit úgy értettem meg,hogy végigböngészetem 16szor amit írt meg az enyémet is itthon,és nekem is kijött úgy ahogy Levinek,úgyhogy egyetértek vele! Na de akkor legyen X az a darabszám amit egy kxk-s táblán lerakva még egyet le tudunk rakni (6x6-osnál X=14) Tehát amit sejtek: \frac{k^2-k}{2}-1=X és szerintem legyen k>2

[858] Csimby2005-03-29 15:16:46

"ugye bizonyítottuk hogy 6x6os táblán 14et elhelyezve még egyet le tudunk rakni,tehát 15öt"

Nem!

Azt bizonyítottuk, hogy ha 11 dominót már leraktunk, akkor biztosan el tudunk helyezni még egyet, vagyis 12-t összesen...

Előzmény: [856] tudniakarok, 2005-03-29 15:04:29

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]    [94]    [95]    [96]    [97]    [98]    [99]    [100]    [101]    [102]    [103]    [104]    [105]    [106]    [107]    [108]    [109]    [110]    [111]    [112]    [113]    [114]    [115]    [116]    [117]    [118]    [119]    [120]    [121]    [122]    [123]    [124]    [125]    [126]    [127]    [128]    [129]    [130]    [131]    [132]    [133]    [134]    [135]    [136]    [137]    [138]    [139]    [140]    [141]    [142]    [143]    [144]    [145]    [146]    [147]    [148]    [149]    [150]    [151]    [152]    [153]    [154]    [155]    [156]    [157]    [158]    [159]    [160]    [161]