Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?

Fórum: Érdekes matekfeladatok

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]    [94]    [95]    [96]    [97]    [98]    [99]    [100]    [101]    [102]    [103]    [104]    [105]    [106]    [107]    [108]    [109]    [110]    [111]    [112]    [113]    [114]    [115]    [116]    [117]    [118]    [119]    [120]    [121]    [122]    [123]    [124]    [125]    [126]    [127]    [128]    [129]    [130]    [131]    [132]    [133]    [134]    [135]    [136]    [137]    [138]    [139]    [140]    [141]    [142]    [143]    [144]    [145]    [146]    [147]    [148]    [149]    [150]    [151]    [152]    [153]    [154]    [155]    [156]    [157]    [158]    [159]    [160]  

Szeretnél hozzászólni? Jelentkezz be.
[1616] Hajba Károly2006-12-14 22:25:52

Ha egy színnel színezek, akkor, ha nem néztem el valamit, 20. S ebből következtetve 2 szín esetén kevesebb, mint 280, a szimmetrikus alakzatokban fellépő ismétlődések miatt. 4 szín esetén kevesebb, mint 480.

Előzmény: [1615] Csimby, 2006-12-14 21:02:24
[1615] Csimby2006-12-14 21:02:24

301. feladat Egy 3×3-as négyzet 1×1-es kisnégyzetei közül hányféleképpen színezhetünk ki 4-et úgy, hogy a négyzet szimetriával egymásba vihető színezéseket nem tekintjük különbözőnek.

[1614] Hajba Károly2006-12-14 08:04:24

... és az, hogy működik a honlap, bizonyítja, igen-igen kevesen "veszik a fáradtságot" az utángondolásra. :o)

Előzmény: [1613] Mumin, 2006-12-14 00:58:57
[1613] Mumin2006-12-14 00:58:57

Ez nagyon profi! Bár elsőre azért elgondolkodtam rajta. A legjobb, hogy minden körben váltja a jeleket.

Előzmény: [1612] psbalint, 2006-12-13 20:16:58
[1612] psbalint2006-12-13 20:16:58

http://www.asztralfeny.hu/magus/magus.php

egy kis izgalmas sziget a gyilkos feladatok végtelen óceánján... ;)

[1611] Cckek2006-12-12 18:29:35

Határozzuk meg az elipszis racionális kordinátájú pontjait:)

[1610] Mhari2006-12-11 23:32:17

Bocs, a link lemaradt: http://www.math.hmc.edu/funfacts/ffiles/20005.7.shtml

[1609] Mhari2006-12-11 23:25:55

Köszönöm a segítséget, különösen Lóczi Lajosnak. Életembe se jutott volna eszembe a "szőrös labda tétel" esete. De lehet, hogy még Euler sem ebben a témában. Azt hittem valami differenciálgeometriai esettel állok szemben. A link jó, ott a megoldás. Még 1x köszönöm a gyors választ!

Előzmény: [1605] Lóczi Lajos, 2006-12-10 21:56:17
[1608] jonas2006-12-11 21:07:51

Amúgy erről az ajánlott irodalom az Új matematikai mozaik (szerk. Hraskó András, Typotex kiadó, 2002) a 395. oldaltól (Szűcs András fejezete).

Előzmény: [1605] Lóczi Lajos, 2006-12-10 21:56:17
[1607] jonas2006-12-11 21:05:34

agy ha a szemein és az orrán nem szőrös, akkor is.

Előzmény: [1606] Mumin, 2006-12-11 00:52:10
[1606] Mumin2006-12-11 00:52:10

Magyarán ha ki van lukasztva az egyik füle, akkor lehet forgó nélküli... :D

Előzmény: [1605] Lóczi Lajos, 2006-12-10 21:56:17
[1605] Lóczi Lajos2006-12-10 21:56:17

Angolul ezek a "hairy ball theorem"-ek. A válasz attól függ, hogy a mackó Euler-karakterisztikája mennyi.

Ha pl. 2, azaz folytonos deformációval átdeformálható egy gömbbe (pl. "felfújod"), akkor a tetszőleges, a felületén értelmezett folytonos vektormezőnek létezik zérushelye, azaz lesz a szőrén forgó.

Ha viszont a karakterisztika 0, tehát a maci átdeformálható egy tóruszba, akkor lehet úgy fésülni, hogy ne legyen forgója: egy szőrös úszógumit meg tudsz fésülni így.

Előzmény: [1601] Mhari, 2006-12-10 10:31:21
[1604] Lóczi Lajos2006-12-10 21:36:33

Forgó: nézd meg néhány (hajas) ember feje búbját és ami ott van, az a forgó :)

Előzmény: [1602] Cckek, 2006-12-10 10:55:10
[1603] AzO2006-12-10 18:07:15

Nalunk sundisznoval volt felteve a kerdes topologia gyakorlaton, es az a feladat ekvivalens volt azzal, hogy fujhat-e mindenhol a szel a foldgombon (a szel vektorszeru, es folytonos :) ). Erre a valasz az, hogy mindig van legalabb 1 pont, ahol nem fuj a szel. Meg hasonlo az a feladat is, hogy megkavarod a levest, es lesz olyan "pont", ami a helyen marad. Persze konnyen lehet, hogy felreertettem a feladatot :)

Előzmény: [1601] Mhari, 2006-12-10 10:31:21
[1602] Cckek2006-12-10 10:55:10

Mi az a forgó? Amúgy ha ez valóban nem hülyesség akkor geometriai valószínűségi probléma tehát a mackó méretétől alakjától kéne hogy függjön:)

Előzmény: [1601] Mhari, 2006-12-10 10:31:21
[1601] Mhari2006-12-10 10:31:21

Sziasztok!

Mi a valószínűsége annak, hogy úgy tudunk megfésülni egy plüssmackót, hogy ne legyen forgója? .

Állítólag létezik egzakt válasz a kérdésre, szóval nem átverés... Megj: Egy Tusnády Gábor nevű matematikust említettek, aki foglalkozik ilyesmivel. Gőzöm sincs, hogy merre induljak el.

Üdv: Mhari

[1600] Cckek2006-12-09 08:00:43

Ha p,q\inN* számítsuk ki a következő összeget:

\sum_{k=0}^{n}\frac{(-1)^kC_n^k}{k^2+(p+q)k+pq}

[1599] Csimby2006-12-09 01:15:45

Köszönöm mindenkinek aki hozzászólt!

Előzmény: [1598] jenei.attila, 2006-12-08 22:21:23
[1598] jenei.attila2006-12-08 22:21:23

Ez mintha most lett volna Arany Dániel versenyfeladat. Az eredeti egyenlet ekvivalens a következővel:

(x+y)2005=xy

, ez pedig ekvivalens a

(x-2005)(y-2005)=20052

. De 20052=524012, vagyis 9 osztója van, ezért az eredeti egyenletnek 9 megoldása van, Neked ebből csak 7 jött ki. Nem számoltam ki, ezért nem tudom melyik 2 hiányzik.

Előzmény: [1597] Hajba Károly, 2006-12-08 20:20:03
[1597] Hajba Károly2006-12-08 20:20:03

Kedves HoA!

Nem is mondtam, hogy 'x' törzsszám, de mindenképpen rámutattál, nem voltam eléggé alapos. Köszi a kiegészítést.

Előzmény: [1596] HoA, 2006-12-08 18:33:19
[1596] HoA2006-12-08 18:33:19

Odáig igaz, hogy a nevező a számláló valamelyik részszorzata. Csak arra nem gondoltál, hogy x nem feltétlenül törzsszám - mint ahogy megoldásaidban sem az - legyen x = u * v, ezért a részszorzat olyan is lehet, hogy az 1*5*401 valamilyen s részszorzata u-val szorozva.

s*u=u*v-2005

 s = v - \frac{2005}{u}

v  = s + \frac{2005}{u}

Egészekről lévén szó u is az 1*5*401 valamilyen részszorzata . Végignézve a lehetőségeket, két esetben kapunk a már ismertektől kükönböző megoldást.

s=5;u=5;v=406;x=2030;y=401*406=162806

és

s=401;u=401;v=406;x=162806;y=2030

Tehát ( 2030 ; 162806) és ( 162806; 2030 ) is két "szimmetrikus" értékpár.

Előzmény: [1551] Hajba Károly, 2006-11-29 00:49:24
[1595] jenei.attila2006-12-05 13:13:37

Pl. "megindexeljük" az unió elemeit a [0,1]x[0,1]-beli valós számpárokkal. A pár első eleme jelenti, hogy melyik halmazból való a kiválasztott elem, a második, hogy azon belül melyik elemről van szó. A halmazok, illetve egy halmaz elemei nyilván indexelhetők [0,1]-beli valós számokkal. A [0,1]x[0,1]-beli valós számpárok halmaza pedig nyilván kontinuum számosságú, ez könnyen látható pl. a pár két számának tizedestört alakban felírt számjegyeinek összefésülésével.

Előzmény: [1594] Cckek, 2006-12-04 22:00:40
[1594] Cckek2006-12-04 22:00:40

Ok nagyon szép. Egy direkt bizonyitást a kardinális számokkal végezhető műveletek nélkül? Tehát nem használhatjuk fel hogy k szor alef nulla az szintán alef nulla stb...

Előzmény: [1593] Csimby, 2006-12-04 21:36:10
[1593] Csimby2006-12-04 21:36:10

Ennek c2 eleme van, hiszen c féle képpen választhatjuk meg hogy melyik halmazból veszünk elemet, és azon belül is még c elem közül választhatunk. És c2=(2A)2=22A=2A=c , ahol A jelöli alef 0-t, a természetes számok számosságát és c a kontinuum számosságot.

Előzmény: [1592] Cckek, 2006-12-04 20:56:58
[1592] Cckek2006-12-04 20:56:58

hogyan igazoljuk hogy kontinuum sok kontinuum számosságú halmaz egyesítése kontinuum számosságú?

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]    [94]    [95]    [96]    [97]    [98]    [99]    [100]    [101]    [102]    [103]    [104]    [105]    [106]    [107]    [108]    [109]    [110]    [111]    [112]    [113]    [114]    [115]    [116]    [117]    [118]    [119]    [120]    [121]    [122]    [123]    [124]    [125]    [126]    [127]    [128]    [129]    [130]    [131]    [132]    [133]    [134]    [135]    [136]    [137]    [138]    [139]    [140]    [141]    [142]    [143]    [144]    [145]    [146]    [147]    [148]    [149]    [150]    [151]    [152]    [153]    [154]    [155]    [156]    [157]    [158]    [159]    [160]