Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?

Fórum: Érdekes matekfeladatok

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]    [94]    [95]    [96]    [97]    [98]    [99]    [100]    [101]    [102]    [103]    [104]    [105]    [106]    [107]    [108]    [109]    [110]    [111]    [112]    [113]    [114]    [115]    [116]    [117]    [118]    [119]    [120]    [121]    [122]    [123]    [124]    [125]    [126]    [127]    [128]    [129]    [130]    [131]    [132]    [133]    [134]    [135]    [136]    [137]    [138]    [139]    [140]    [141]    [142]    [143]    [144]    [145]    [146]    [147]    [148]    [149]    [150]    [151]    [152]    [153]    [154]    [155]    [156]    [157]    [158]    [159]    [160]    [161]  

Szeretnél hozzászólni? Jelentkezz be.
[3089] bily712009-11-30 23:59:25

Ezek pedig nem csupa páros pithagoraszi számhármasok, miért következne abból, hogy m=2|a, hogy mind páros? Már félek bármit is írni, annyira szigorúan bántok velem...

Előzmény: [3088] bily71, 2009-11-30 23:52:21
[3088] bily712009-11-30 23:52:21

Legyen m=2,a=4,x=1,n=1, ekkor

am+(n+mx)m=(n+a)m

42+(1+(2.1)2=(1+4)2,

vagy m=2,a=12,x=2,n=1, ekkor

122+(1+2.2)2=(1+12)2.

Tehát m=2, és igaz! Én erre gondoltam.

Előzmény: [3087] bily71, 2009-11-30 23:38:47
[3087] bily712009-11-30 23:38:47

Tehát a következő gondolatmenet hamis állításokból áll?

am+(n+mx)m=(n+a)m

(n+a)m\equivnm(mod a)

am+(n+mx)m\equiv(n+mx)m(mod a)

(n+mx)m\equivnm(mod a)

(n+mx)^m=\binom{m}{0}n^m+\binom{m}{1}n^{m-1}m^1x^1+...+\binom{m}{m-1}n^1m^{m-1}x^{m-1}+\binom{m}{m}m^mx^m

\binom{m}{0}n^m+\binom{m}{1}n^{m-1}m^1x^1+...+\binom{m}{m-1}n^1m^{m-1}x^{m-1}+\binom{m}{m}m^mx^m\equiv{n^m}(\mod{a})

\binom{m}{1}n^{m-1}m^1x^1+...+\binom{m}{m-1}n^1m^{m-1}x^{m-1}+\binom{m}{m}m^mx^m\equiv0(\mod{a})

A bal oldali összeg minden tagja osztható m-el, és az összeg a-val osztva 0-át ad maradékul, ebből nem következik, hogy m|a? És ha nem, akkor miért?

Előzmény: [3085] SAMBUCA, 2009-11-30 21:08:02
[3086] rizsesz2009-11-30 23:00:07

kedves bily71. ilyenkor alapjaiban remeg meg az a hite az embernek, hogy van bármiféle közöd a matematikához.

hogy lehet egy ilyen kérdést feltenni úgy, hogy tudod, hogy sosem igaz az adott állítás? :(

Előzmény: [3083] bily71, 2009-11-30 20:28:42
[3085] SAMBUCA2009-11-30 21:08:02

ajánlanám: ezt

és egy idézet: "Ha 1 + 1 \neq 2, akkor én vagyok a római pápa."

Előzmény: [3083] bily71, 2009-11-30 20:28:42
[3084] SAMBUCA2009-11-30 21:00:51

m=2: nem igaz, van nem csupa páros pithagoraszi számhármas

m>2: igaz, sőt az is, hogy m nem osztója a-nak!!!

Előzmény: [3083] bily71, 2009-11-30 20:28:42
[3083] bily712009-11-30 20:28:42

A feladat folytatása: igaz-e, hogy m|a?

Előzmény: [3063] bily71, 2009-11-27 22:41:08
[3082] SmallPotato2009-11-30 20:14:27

Legyen n páratlan; ekkor van olyan összekötő szakasz, amely a négyzet oldalaival 45°-os szöget zár be és a származtatás (BD-re vonatkozó) szimmetriája miatt E-ben érinti a szóban forgó burkológörbét. Ha ez a szakasz AB-n az A ponttól a k-adik osztópontból indul, akkor a a másik végpontja a származtatás értelmében BC-n a B-től a k+1-edik osztópont. A 45° miatt viszont ez C-től a k-adik osztópont. A BC szakasz két darabjából tehát 2k+1=n. Ha mármost n a végtelenhez tart, akkor \lim_{n\to\infty}\frac k n=\frac12, tehát a jelzett szakasz határhelyzetben AB és BC felezőpontjait köti össze. Az E pont ezek szerint negyedeli a BD átlót.

Előzmény: [3075] bily71, 2009-11-29 18:21:36
[3081] jenei.attila2009-11-30 10:13:42

Induljunk ki a 2 és 17 prímekből...

Előzmény: [3080] bily71, 2009-11-30 09:29:04
[3080] bily712009-11-30 09:29:04

Szerintem, ha az 5-ös nem szerepel a kiinduló prímek közt, akkor később sem fog szerepelni.

Előzmény: [3058] RRichi, 2009-11-27 21:45:31
[3079] jonas2009-11-30 08:33:27

Ez a kedvenc számrejtvényem. itt van rá megoldás.

24=3.(14-6)

Előzmény: [3074] Janosov Milán, 2009-11-29 17:27:54
[3078] rizsesz2009-11-29 20:31:47

6:(1-3/4) húhh.

Előzmény: [3077] Janosov Milán, 2009-11-29 19:24:07
[3077] Janosov Milán2009-11-29 19:24:07

A feladat csak a négy alapműveletet engedi, ebben, hogy nem volt teljesen egyértelmű; de így érdekesebb (*, /, +, - és zárójelek).

Előzmény: [3076] R.R King, 2009-11-29 18:37:31
[3076] R.R King2009-11-29 18:37:31

Üdv. Hatványozás, mint rövidített szorzás nem használható? 1 a köbön*4*6, de így túl egyszerű...

Előzmény: [3074] Janosov Milán, 2009-11-29 17:27:54
[3075] bily712009-11-29 18:21:36

Adott az ABCD négyzet. Osszuk fel az AB és a BC oldalakat n egyenlő részre. Kössük össze az A csúcsot a BC oldal B-hez közelebbi első osztópontjával, azután az AB oldal A-hoz közelebbi első osztópontját a BC oldal B-hez közelebbi második osztópontjával, sít., végül az AB oldal B-hez közelebbi első osztópontját fogjuk összekötni a C csúccsal. A kapott szakaszok egy görbét érintenek, ami az E pontban metszi a BD átlót. Milyen arányban osztja az E pont az átlót, ha n-et minden határon túl növeljük?

[3074] Janosov Milán2009-11-29 17:27:54

Hahó!

Egy szerintem érdekes (de nem annyira nehéz feladat):

Írjuk fel a 24-et az 1, 3, 4 és 6 számok és az alapműveletek segítségével úgy, hogy mindegyik számot pontosan egyszer kell felhasználni, zárójelet használhatunk, de a számokat közvetlenül egymás mellé írva többjegyű számokat alkotni nem szabad.

(A feladat egy BME-s felvételivel kapcsolatos újságjából való)

[3073] bily712009-11-29 14:15:51

[3067]-ben kiegészítettem a feladatot a következő mondattal:

"Azt kell megmutatni, hogy bármely m prímre..."

Előzmény: [3071] Sirpi, 2009-11-29 12:43:29
[3072] SAMBUCA2009-11-29 12:48:18

Pell-egyenletek

[3071] Sirpi2009-11-29 12:43:29

Azt honnan kellett volna tudnunk, hogy m prím?

Előzmény: [3070] bily71, 2009-11-29 10:07:49
[3070] bily712009-11-29 10:07:49

Nem fokozom, csak leírom a választ.

am+bm=cm, mivel c>a, létezik n egész, hogy c=a+n. Fermat tételéből következik, mivel m prím, hogy

cm\equivc\equiv(a+n)m\equiva+n(mod m)

, továbbá

am\equiva(mod m)

bm\equivb(mod m)

, ebből

am+bm\equiva+b\equiva+n(mod m)

b\equivn(mod m)

, tehát

b=n+xm

, ahol x nemnegatív egész.

Előzmény: [3067] bily71, 2009-11-28 16:05:53
[3068] Radián2009-11-28 21:25:36

Azt "mutattam" meg.

Előzmény: [3067] bily71, 2009-11-28 16:05:53
[3067] bily712009-11-28 16:05:53

Azt kell megmutatni, hogy bármely m prímre "igaz", persze tudjuk, hogy ha m>2, akkor nem lesz megoldás.

Előzmény: [3065] Radián, 2009-11-27 23:25:47
[3065] Radián2009-11-27 23:25:47

Szia Bily!

Az állítás igaz. (hisz 2. egyenlőségbe behelyettesítve b=n+mx, c=a+n kapjuk az 1-et)

Előzmény: [3063] bily71, 2009-11-27 22:41:08
[3064] bily712009-11-27 22:46:28

Bocs, a<b nem feltétel, csak a<c és b<c.

Előzmény: [3063] bily71, 2009-11-27 22:41:08
[3063] bily712009-11-27 22:41:08

Igaz-e, hogy ha teljesül az am+bm=cm egyenlőség, akkor teljesül az am+(n+mx)m=(a+n)m egyenlőség is, ahol b=n+mx, c=a+n?

(a<b<c és a,b,c,n,m,x nemnegatív egészek.)

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]    [94]    [95]    [96]    [97]    [98]    [99]    [100]    [101]    [102]    [103]    [104]    [105]    [106]    [107]    [108]    [109]    [110]    [111]    [112]    [113]    [114]    [115]    [116]    [117]    [118]    [119]    [120]    [121]    [122]    [123]    [124]    [125]    [126]    [127]    [128]    [129]    [130]    [131]    [132]    [133]    [134]    [135]    [136]    [137]    [138]    [139]    [140]    [141]    [142]    [143]    [144]    [145]    [146]    [147]    [148]    [149]    [150]    [151]    [152]    [153]    [154]    [155]    [156]    [157]    [158]    [159]    [160]    [161]