Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?

Fórum: Érdekes matekfeladatok

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]    [94]    [95]    [96]    [97]    [98]    [99]    [100]    [101]    [102]    [103]    [104]    [105]    [106]    [107]    [108]    [109]    [110]    [111]    [112]    [113]    [114]    [115]    [116]    [117]    [118]    [119]    [120]    [121]    [122]    [123]    [124]    [125]    [126]    [127]    [128]    [129]    [130]    [131]    [132]    [133]    [134]    [135]    [136]    [137]    [138]    [139]    [140]    [141]    [142]    [143]    [144]    [145]    [146]    [147]    [148]    [149]    [150]    [151]    [152]    [153]    [154]    [155]    [156]    [157]    [158]    [159]    [160]  

Szeretnél hozzászólni? Jelentkezz be.
[544] SAMBUCA2004-10-11 17:38:05

Kedves Onogur!

Kemeny Legenyhez hasonloan En is fel tudom osztani az L alakot 5 (n) egybevago reszre.

//Persze az egyes reszek nem osszefuggoek, de ettol meg egybevagoak//

Ez lehet akar a 110. feladat is.

SAMBUCA (\ne HOMI)

[543] Hajba Károly2004-10-11 12:00:20

109. feladat:

Egy embernek 9 gyereke van, mind 1 és 20 éves között (ikrek nincsenek). A gyerekek között nincs három olyan, hogy közülük a fiatalabb és az idősebbik életkorának átlaga pont a középső életkorát adja. Hány évesek a gyerekek?

HK

[542] Hajba Károly2004-10-11 11:57:59

Az indulatok hevében és figyelmetlenségek miatt felborult a feladatszámozások rendje, melyet most megpróbálok rendezni:

[502] Homi(Sambucs?) mágikus számozású feladat sorszáma: 106.

[508] Sambuca 'just for fun' feladata: 107.

[524] Maga Péter feladata: 108.

Üdv: HK

[541] Hajba Károly2004-10-11 07:50:19

Kedves Kemény Legény!

Szurkolok Neked. Remélem világraszóló eredményedet velünk osztod meg először. Sok sikert hozzá. :o)

HK

Előzmény: [539] Kemény Legény, 2004-10-10 21:48:07
[540] Hajba Károly2004-10-11 07:41:21

Kedves Sambuca!

Köszi! Ennyi elég a tisztességnek, hogy közlöd, egy saját rutinnal állítottad elő. Egyébként kiváncsi vagyok, hogy milyen - egyébként bizton állíthatom, hogy nemlétező - titkolt szándékot vélsz felfedezni a feladat kiírásában. Ezt egy másik fórumban láttam és megtetszett, érdekesnek tűnt számomra. De látom, neked is tetszik, s ennek nagyon örülök.

Üdv: HK

Előzmény: [528] SAMBUCA, 2004-10-10 19:36:26
[539] Kemény Legény2004-10-10 21:48:07

Szep ecsem,ezt az L-alakzatot pedig siman felosztom neked 5 egybevago reszre!

Előzmény: [471] V. Dávid, 2004-09-04 09:40:11
[538] Kemény Legény2004-10-10 21:34:22

Szep ecsem!Meg egyszer koszonom a lenyeglato kepessegeim ilyen nagy merteku csiszolast,remelem akad meg alkalom hasonlo dolgokra!

Előzmény: [537] V. Dávid, 2004-10-10 21:31:03
[537] V. Dávid2004-10-10 21:31:03

Én pedig örülök, hogy tehettem valamit a lényeglátásod csiszolása érdekében.

Előzmény: [536] Kemény Legény, 2004-10-10 21:16:32
[536] Kemény Legény2004-10-10 21:16:32

Ez igen szep ecsem,grtatulalok es koszonom,hogy mindezt megosztottad mivelunk es nem a postas bacsinak mondtad el eloszor!!!

Előzmény: [535] V. Dávid, 2004-10-10 21:07:22
[535] V. Dávid2004-10-10 21:07:22

Semmire. Ami ott szerepel, az egy teljesen használhatatlan állítás. Kizálólag érdekességnek jó. Ezért csodálkoztam, hogy hogy jön ide, hogy ennél már a kínaiak is jobban megközelítették a \pi-t.

Előzmény: [534] Kemény Legény, 2004-10-10 20:57:23
[534] Kemény Legény2004-10-10 20:57:23

Elgondolkoztam,es inkabb megkerdezem ez mi a halalra jo?

Előzmény: [533] V. Dávid, 2004-10-10 20:52:31
[533] V. Dávid2004-10-10 20:52:31

Neked meg a diákolimpiás topikban lévő 15-ös hozzászólásod volt rendkívül építő jellegű. Nézd meg még egyszer, amit írtam, és gondolkozz el azon, mit a lényege. Nem az, hogy minnél jobban megközelítse a \pi-t.

Előzmény: [532] Kemény Legény, 2004-10-10 20:29:50
[532] Kemény Legény2004-10-10 20:29:50

Koszonom az epito megjegyzest,nagyban hozzajarult ezen topic bovulesehez,gratulalok!

Előzmény: [531] V. Dávid, 2004-10-10 20:24:33
[531] V. Dávid2004-10-10 20:24:33

A lényeglátásodon volna még mit csiszolni.

Előzmény: [530] Kemény Legény, 2004-10-10 20:18:00
[530] Kemény Legény2004-10-10 20:18:00

Grat.Ennel mar a kinaiak is jobbat tudtak \frac{355}{113}.(ez csak kb. 3 milliomoddal ter el \pi-tol).

Előzmény: [529] V. Dávid, 2004-10-10 20:11:24
[529] V. Dávid2004-10-10 20:11:24

Fantasztikus numerológiai felfedezés:

\sqrt2+\sqrt3\approx\pi

[528] SAMBUCA2004-10-10 19:36:26

Kedves Onogur!

A megoldasok 50-50%-ban az agyam illetve egy szamologepes program termeke. (A program forraskodjat is en irtam :) )

Mar latom, hogy mire megy ki a feladat, de ezt meg nem arulnam el, csak majd ha meglesz az altalanos megoldas.

Előzmény: [525] Hajba Károly, 2004-10-09 23:18:25
[527] Gubbubu2004-10-10 14:16:44

Úgy látom, ez nehéz feladatnak bizonyult. Segítek a többieknek: a Google-ban nem árt rákeresni az Erdős, a Ginzburg és a Ziv keresőszavakra. Akár így együtt. Üdv:G.

Előzmény: [501] HOMI, 2004-10-08 12:13:20
[526] Csimby2004-10-10 01:06:52

Sziasztok!

Jó régen nem írtam ide (winchester tönkrement, táborok, tanulás stb.). És most is egy saját hozzászólásomra reagálok :-) A SET nevű játékról van szó és arról, hogy hány kártyát kell kirakni ahhoz, hogy biztosan legyen benne set. Itt van egy link ahol 20 kártyát raknak ki úgy, hogy nincsen benne set. Látom megint téma volt a Stetson-on található Packing problámák egyike, Muy Bien. Na jó szórakozást...

Előzmény: [436] Csimby, 2004-07-23 18:36:33
[525] Hajba Károly2004-10-09 23:18:25

Kedves Sambuca!

Kapom, kapkodok a levegő után csodálkozásomban. Csodálom kitartásodat, hogy mind a 108 lehetőséget végigszámoltad. De ha másodpercenként egyet át is vizsgálsz, az évek sora?! Azaz nyílvánvaló, hogy valahogy másképp csináltad. Progival vagy levezetted? Illő lenne titkodat elárulni. Látod Suhanc szépen levezette a feltehetőleg számodra érdektelen feladat megoldását.

Mindentől függetlenül - bárhogyan is leltél a megoldásra - gratulálok Neked. De miről is akarsz meggyőzni? :o)

Üdv: HK

Előzmény: [521] SAMBUCA, 2004-10-09 03:20:17
[524] Hajba Károly2004-10-09 23:05:24

Kedves Suhanc!

Szép megoldásodhoz gratulálok.

Bevallom őszintén, az utóbbi feladatok hozottak, sőt erős gyanúm szerint mind keményen madárlátta. Ti. ahonnan hoztam oda is hozták valahonnan egy általam ismeretlen helyről. Létezik egy feladatfeladós hely, egyszer rá is találtam úgy másfél hónapja, de sajnos a NAV hathatós segítsége mellett begyűjtöttem egy kiírhatatlan kémvírust, mely miatt alaklmazni kellett a cformat-ot. Így egy csomó linkemtől megszabadultam.

Általában mondom, hogy a háló teljes mértékben nyílvános és szabad hely. Ha valamit fellelsz rajta, általában szabadon használhatod nem üzleti célra ill. ha nem követsz el vele etikai vétséget. Így az itt feltett feladatokat is minden engedély nélkül feladhatod a sulidban, csak jelezd, hogy a hálón találtad és kész. Etikátlan a pontversenyen kitűzött feladazokat más fórumon feladni és ilyen módon begyűjteni a megoldást.

HK

Előzmény: [522] Suhanc, 2004-10-09 13:34:46
[523] Maga Péter2004-10-09 22:04:22

Üdv mindenkinek!

Egy szép feladat (sajnos nem saját):

Bizonyitsuk be, hogy minden n>1 egészre

\sum_{i=1}^n\sqrt{i} irracionális!

[522] Suhanc2004-10-09 13:34:46

Kedves Onogur!

Hát itt eléggé begyorsultak a hozzászólások,és már nem nagyon követtem... a 103. feladatodra viszont, ha jól láttam, még nem válaszolt senki! Először is: Nagyon ötletes!!!:) Ha saját, akkor őszintén gratula! Ha láttad valahol, leírnád, hol találok még ilyeneket? /ja, és ha nem probléma, ezt is "elkérném" matekórára ;D/

A megoldásom:

A 6. állítás nyilvánvalóan hamis! Tehát 6-os nincs a számban, az azonban osztható hattal! Ebből az is következik, hogyaz első állítás is hamis, tehát egyes sincs benne!

Innen esetszétválasztással oldjuk meg!

Tfh: a 2. állítás igaz!Ekkor 0 nem lehet benne, mert az csak a legelső helyre kerülhetne! Tehát a 0. álllítás is hamis!

Ha minden számjegy kisebb, mint a következő, akkor nincs két egyforma, tehá a hármas állítás is igaz, így a számban 3-as is van! Ezzel megcáfoltuk a nyolcas állítást, mert 3-2=1! Tehát nyolcas nincs benne!

A negyedik állításnak hamisnak kell lennie,különben az ötös állítás hamis, tehát a szám legalább 6 jegyű, de csak a 2;3;4 számjegyek építik fel, és nincs ismétlődés! Ez nyilvánvalóan lehetetlen. Az ötös állítás viszont igaz, mert 5 féle számjegyet (0; 1;4;6;8) már kizátunk, és nem lehet ismétlődés!!! Ekkor a 9. állítás is igaz, mert 2+3=5! Mivel az eddig kiválasztott számok (2;3;5;9), és a még nem vizsgált számok (7) között csak a 2 a páros, és az sem állhat a végén( a második állítás miatt), ezért a 7. állítás nem igaz! Ekkor a 2;3;5;9 számokból felépülő egyetlen lehetsége megoldás a 2359! Ez azonban tesz eleget a 0., hamis állításnak, tehát ez sem jó megoldás!!!

Ha a 2. állítás hamis:

Ha a 8. állítás hamis lenne, akkor a 4. állítás biztosan igaz lenne, mert csak a 3 4;5 számok vannak egymás mellett azok közül, amelyeket még nem lőttünk ki! Ha 4 igaz, akkor 5;7,9 hamisak,ezért a 3. igaz, ekkor azonban az 5. állítás hamissága miatt ellentmondásra vezet!()hasonlóan az előző esethez!)

Tehát a 8.állítás igaz! Emiatt a 7. és a 9.állítás hamis, valamint a 8. állítás igaza megcáfolja a 4. állítást, ezért a is hamis!

Összesítve: ez esetben ídáig 1;2;4;6;7;9 hamisak, és 8 igaz! Ekkor nem lehet 3 és 5 is igaz, mert akkor 3+5=8, és ekkor 9 igaz lenne! De mindkettő hamis sem lehet, mert akkor nem lesz PN számjegy a számban, és akkor 7. igaz lenne!

Ha 5. hamis, és 3. igaz, akkor legfeljebb 3 számjegyből áll a szám(0;3;8), és 5. hamissága miatt leglább hatjegyű, persze, ismétlés nélkül!:D Tehát ez megint ellentmondás!

Tehát 5.igaz, és 3. hamis!

Mivel a szám 6-tal osztható, ezért kell lennie 0-s számjegynek is! Mievl 3. hamis, ezért van ismétlődő számjegy! Azonban 5 vagy 8 nem ismétlődhet, mert akkor 5+0=5 és 9. igaz lenne! Ugyanezen okokmiatt nem leht a számban 3db 0! Ezen okok miatt az egyetlen lehetséges megoldás 8005!!!

Előzmény: [497] Hajba Károly, 2004-10-06 09:07:13
[521] SAMBUCA2004-10-09 03:20:17

Kedves Onogur!

Ezt kapd ki:

823502+381252=8235038125

Eleg meggyozo?

Előzmény: [498] Hajba Károly, 2004-10-08 01:00:59
[520] SAMBUCA2004-10-09 02:41:14

Kedves Onogur!

Ezt nezd: 94122+23532=94122353

Előzmény: [498] Hajba Károly, 2004-10-08 01:00:59

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]    [94]    [95]    [96]    [97]    [98]    [99]    [100]    [101]    [102]    [103]    [104]    [105]    [106]    [107]    [108]    [109]    [110]    [111]    [112]    [113]    [114]    [115]    [116]    [117]    [118]    [119]    [120]    [121]    [122]    [123]    [124]    [125]    [126]    [127]    [128]    [129]    [130]    [131]    [132]    [133]    [134]    [135]    [136]    [137]    [138]    [139]    [140]    [141]    [142]    [143]    [144]    [145]    [146]    [147]    [148]    [149]    [150]    [151]    [152]    [153]    [154]    [155]    [156]    [157]    [158]    [159]    [160]