Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?

Fórum: Érdekes matekfeladatok

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]    [94]    [95]    [96]    [97]    [98]    [99]    [100]    [101]    [102]    [103]    [104]    [105]    [106]    [107]    [108]    [109]    [110]    [111]    [112]    [113]    [114]    [115]    [116]    [117]    [118]    [119]    [120]    [121]    [122]    [123]    [124]    [125]    [126]    [127]    [128]    [129]    [130]    [131]    [132]    [133]    [134]    [135]    [136]    [137]    [138]    [139]    [140]    [141]    [142]    [143]    [144]    [145]    [146]    [147]    [148]    [149]    [150]    [151]    [152]    [153]    [154]    [155]    [156]    [157]    [158]    [159]    [160]    [161]  

Szeretnél hozzászólni? Jelentkezz be.
[411] Sirpi2004-07-14 21:35:09

Még szerencse, hogy nem az a kérdés, Te mit tennél, hanem hogy a kalózok hogyan cselekednének :-). Nekik pedig, racionálisan gondolkodva, el kell fogadniuk az egy aranyat, ugyanis ellenkező esetben a következő kalóz SEMMIT nem adna nekik, tehát még rosszabbul járnának. Feltéve persze, hogy a kalózok nem játszanak össze, mindegyik csak a saját egyéni érdekeit nézi.

Tehát továbbra is fenntartom, hogy ha én kezdenék, 96 0 1 0 1 0 1 0 1 0-val indítanék.

Sirpi

Előzmény: [410] Hajba Károly, 2004-07-14 15:46:41
[410] Hajba Károly2004-07-14 15:46:41

Kedves Sirpi!

Ha én lennék az 1 aranyas kalóz, bizony az osztó ellen szavaznék ... és zsupsz már a vízben is van.

Szerintem 4 kalóznak meg kell adnia az átlag 10-10 aranyat, hogy mindenképpen mellette szavazzanak, s ekkor már a többi 60 az övé lehet.

HK

Előzmény: [409] Sirpi, 2004-07-14 11:22:59
[409] Sirpi2004-07-14 11:22:59

Mivel sokáig nem írt megoldást senki, leírom, mire jutottam.

Nézzük meg először, mi a helyzet 2 kalózra. Nyilván aki oszt, az mind a 100-at magának adja, és a másik hiába szavaz ellene, nem tehet semmit.

Három kalóz esetén ezért, ha az osztó a legutolsónak 1 aranyat ad, akkor már maga mellé állítja, mert ha az utolsó a vízbedobásra szavaz, nem kap semmit. Ilyenkor tehát 99 0 1 jó osztás.

4 kalóz esetén 99 0 1 0 megint megteszi (a 3. kalóz ekkor az első mellett fog szavazni, mert különben 0-t kapna, ezzel megvan az 50%).

Stb... 10 kalóz esetén 96 0 1 0 1 0 1 0 1 0 megfelelő leosztás (az egyeseknek érdemes megszavazni a dolgot, különben 0-t kapnának, azaz megvan az 5 szavazat).

Sirpi

Bár, amikor az első kalóz megteszi az ajánlatát, azért nem árt, ha picit aggódik, hogy nem fogtak-e össze néhányan ellene :-)

Előzmény: [408] lorytibi, 2004-07-12 13:15:00
[408] lorytibi2004-07-12 13:15:00

Matek táborban az egyik tanárom adta fel ezt a feladatot, szerintem érdemes rajta elgondolkozni:

88. feladat: 10 kalóz szerzett 100 aranyat. Egymás közt el akarják osztani, úgy hogy a legkegyetlenebb kalóz osztja szét az aranyat, és ezt megszavaztatják. Ha a kalózok lagalább fele megszavazza, elosztják az ajánlat szerint. De ha a kalózok kevesebb, mint fele szavazza meg, a legkegyetlenebb kalózt vízbe dobják a nyílt tengeren, és a második legkegyetlenebb kalóz folytatja az elosztást. A kalózok egyformán inteligensek. Nincs köztük két egyformán kegyetlen. (A felosztó kalóz szavazata is beleszámít!)

Hány aranyat adjon magának a legkegyetlenebb kalóz, hogy biztosan ne dobják vízbe?

A feladatot lehet hogy nem fogalmaztam elég pontosan, de emlékezetből írtam le. Ha van valami kérdésetek írjatok!

[407] joe2004-07-02 19:08:56

87. feladat: Legyen S az ABC háromszög súlypontja. Keressük meg a sinCAS\angle+sinSBC\angle kifejezés maximális értékét!

[406] Sirpi2004-07-02 14:25:59

Szebb.

Előzmény: [405] nadorp, 2004-07-02 12:36:16
[405] nadorp2004-07-02 12:36:16

Nem tudom,hogy szebb-e, de kicsit rövidebb.

Csináljunk az egyenletből egyenletrendszert:

log3(2x+1)=y és log2(3x-1)=y

azaz,

2x+1=3y

3x-1=2y

összeadva a két egyenletet 2x+3x=2y+3y. Mivel az f(x)=2x+3x függvény szigorúan monoton nő, ezért az előző egyenlőség csak x=y esetén teljesül, azaz

log3(2x+1)=x

2x+1=3x

\left(\frac23\right)^x+\left(\frac13\right)^x=1

A fenti egyenletnek az x=1 megoldása,és másik nincs is, mert a bal oldalon egy szigorúan monoton csökkenő függvény áll.

Előzmény: [404] Sirpi, 2004-07-02 11:50:23
[404] Sirpi2004-07-02 11:50:23

Nos, mivel eddig senki nem reagált senki a példára, beírom ide a ronda, favágós megoldásomat. Ha valaki tud szebbet, szóljon.

Legyen f(x)=log3(2x+1), g(x)=log2(3x-1). Olyan x-ek kellenek, amire f(x)=g(x).

Könnyű látni, hogy az x=1 megoldás, továbbá g(x) csak pozitív x-ekre van értelmezve. Ha ezek után megmutatjuk, hogy a közös értelmezési tartományon g(x) "gyorsabban nő", mint f(x), akkor készen is vagyunk, hiszen ebben az esetben az x=1-en kívül nem létezhet más megoldás.

Egyszerú átalakítással, felhasználva a logab=logcb/logca azonosságot, kapjuk, hogy f(x) = \frac1{\ln 3} \cdot (2^x+1) és g(x) = \frac1{\ln 2} \cdot (3^x-1).

f'(x) = \frac 1{\ln 3} \cdot \frac 1{2^x+1} \cdot \ln 2 \cdot 2^x

g'(x) = \frac 1{\ln 2} \cdot \frac 1{3^x-1} \cdot \ln 3 \cdot 3^x

Mindkét derivált pozitív x>0 esetén, továbbá \frac{g'(x)}{f'(x)} = \frac{\ln^2 3}{\ln^2 2} \cdot \frac{3^x}{3^x - 1} \cdot \frac{2^x}{2^x+1}. Itt mindhárom tényező nagyobb, mint 1, vagyis minden x>0-ra g'(x)>f'(x), vagyis a g(x)-f(x) függvény szigorúan monoton nő.

Előzmény: [403] lorantfy, 2004-06-30 06:50:07
[403] lorantfy2004-06-30 06:50:07

86. feladat: Oldjuk meg a köv. egyenletet a valós számok halmazán:

log3(2x+1)=log2(3x-1)

(Hegyi Lajos Emlékverseny 1999. 10.oszt.)

[402] lorantfy2004-06-28 10:40:04

Szép volt Fiúk!

Gratulálok!

(2000 évi versenyfeladat volt 9.osztályosoknak) Kár, hogy a TECH nem működik rendesen!

Előzmény: [400] nadorp, 2004-06-28 10:18:27
[401] Hajba Károly2004-06-28 10:22:24

Kedves Péter!

Így már jó. Gratulálok. Egyszerűbben oldottad meg, mint én. :o)

HK

Előzmény: [400] nadorp, 2004-06-28 10:18:27
[400] nadorp2004-06-28 10:18:27

Újabb kísérlet a 85. feladatra.

Alakítsuk át az egyelet bal oldalát.

(x+y)2-4(x+y)+8y=13

(x+y-2)2=17-8y

Ha bevezetjük a z=x+y-2 jelölést, akkor (sajnos a frac nem működik)

y=(17-z2)/8 és

x=(z2+8z-1)/8.

Most már csak z-re kell kikötés. Látszik, hogy ha z páros, akkor y nem lehet egész, viszont ha z páratlan, akkor y - és így x is - egész lesz. Az egyenlet összes megoldása tehát a fenti két képlettel definiált x,y számok, ahol z tetszőleges páratlan szám.( pld x=8 y=-1 a z=5 esetén adódik)

Előzmény: [397] lorantfy, 2004-06-28 09:19:12
[399] Hajba Károly2004-06-28 09:57:14

Kedves László és Péter!

Első ránézésre nem tűnt olyan érdekesnek, mint menet közben kiderült. :o)

Megoldás a 85. feladatra:

(1) (x+y)2-4(x-y)=13

Rendezzük y-ra az (1) egyenletet:

y2+2(x+2)y+x2-4x-13=0

azaz

y1,2=-(x+2)\pmGYÖK(8x+17)

Akkor kapunk egész megoldást, ha a gyök alatti érték négyzetszám. S itt meglepő fordulat következik. :o) Legyen

8x+17=(2n+1)2

\forall(n>1)\inN+-re\existsx. Azaz végtelen sok megoldás létezik. (Remélem jól írtam be a leírást. :o)

Innen a képleteket (x=..., y=...) nem tudom beírni, mivel nem jó jelenleg a TeX értelmezője. :o(

x=\frac{(2n+1)^2-17}{8}

Később folytatom.

HK

Előzmény: [395] lorantfy, 2004-06-27 12:54:37
[398] nadorp2004-06-28 09:55:12

Kedves László !

Teljesen igazad van, de mire ezt észrevettem, már Te is. A megoldásom teljesen rossz, elkapkodtam és elszámoltam. De vam másik, mindjárt leírom, ha még nem késő.

Előzmény: [397] lorantfy, 2004-06-28 09:19:12
[397] lorantfy2004-06-28 09:19:12

Kedves Péter!

Az a gondom, hogy x=4, y=1 ránézésből megoldás. Ez megoldása is az egyenletrendszerednek, de az x=8, y=-1 pár már nem, pedig ezek is jók.

Előzmény: [396] nadorp, 2004-06-28 08:35:24
[396] nadorp2004-06-28 08:35:24

Úgyis régen szóltam hozzá. Megoldás a 85. feladatra.

Egészítsük ki az egyenlet bal oldalát teljes négyzetté.Ekkor

(x+y)2-4(x-y)+4(x-y)2=13+4(x-y)2

[x+y-2(x-y)]2=13+(2x-2y)2

(x-3y)2-(2x-2y)2=13

Két négyzetszám különbsége csak a 49 és 36 esetén lesz 13, ezért a

x-3y=\pm7

x-y=\pm3

egyenletrendszereket kell megoldani. Látható, hogy a négy egyenletrendszerből csak y=2 x=-1 esetén kapunk megoldást.

Előzmény: [395] lorantfy, 2004-06-27 12:54:37
[395] lorantfy2004-06-27 12:54:37

85. feladat: Oldjuk meg az egész számok halmazán a következő egyenletet:

(x+y)2-4(x-y)=13

[394] Lóczi Lajos2004-06-24 12:55:57

Kedves Mihály!

Ahhoz, hogy egy valós függvény deriváltját a 0-ban kiszámolhassuk, szükséges, hogy a függvény értelmezve legyen legalább egy 0-hoz torlódó pontsorozat mentén.

Nem beszélhetünk tehát "csak az origóban deriválható függvényről, amely ott ráadásul kétszer is deriválható", hiszen a második derivált 0-beli értékének kiszámításához az előző bekezdés értelmében ismernünk kellene az első derivált értékeit egy 0-hoz torlódó pontsorozat mentén. Mivel azonban az első derivált csak a 0-ban van definiálva, ez nem lehetséges.

A válasz tehát, hogy ilyen függvény nincs.

Előzmény: [393] Fálesz Mihály, 2004-06-18 14:06:40
[393] Fálesz Mihály2004-06-18 14:06:40

Mutassunk példát olyan valós függvényre, ami csak a 0-ban differenciálható, de ott kétszer is.

[392] lorantfy2004-06-17 19:40:48

Bocs! Elkeztem begépelni a hozzászólást és közben érettségiztettem, aztán csak egy óra múlva küldtem el, így nem láttam a hozzászólásodat!

Előzmény: [391] Sirpi, 2004-06-17 16:38:57
[391] Sirpi2004-06-17 16:38:57

Komplex számok ismerete nélküli megoldásként én arra gondoltam...

Igen, ez az egyszerű, de a második hozzászólásomban erre már én is rájöttem :-)

Az alapállítást f(1)=-1 jelenti, csak (*)-ból nem jöhet ki az állítás.

Teljesen jogos, pontatlanul fogalmaztam. A megoldás vázlata kb. így néz ki:

f(k+3)=f(k)f(3)-f(k-3)=2f(k)-f(k)=f(k), kihasználva az indukciót, a (*) összefüggést, valamint azt, hogy f(3)=2. Utóbbi pedig könnyen látszik, még ha nem is közvetlenül számolunk, akkor is: f(2)=f(1)f(1)-f(0)=1-2=-1, f(3)=f(1)f(2)-f(1)=(-1)2-(-1)=2

Tudom, túlragoztam a dolgot...

Előzmény: [390] lorantfy, 2004-06-17 16:01:24
[390] lorantfy2004-06-17 16:01:24

Szia Sirpi!

Tetszik az f(k) függvényed! Az alapállítást f(1)=-1 jelenti, csak (*)-ból nem jöhet ki az állítás.

Komplex számok ismerete nélküli megoldásként én arra gondoltam, hogy mivel a=1 nem megoldása az egyenletnek, be lehet szorozni mindkét oldalt (a-1)-el.

Így (a-1)(a2+a+1)=0 vagyis a3-1=0 és ha a3=1 akkor persze a2004=1, tehát a keresett kifejezés értéke 2.

Persze a megoldás elég "misztikus" annak aki a komplex számokat nem ismeri. Hogy lehet az, hogy a\ne1 és a3=1?

Előzmény: [388] Sirpi, 2004-06-17 13:01:13
[389] Sirpi2004-06-17 15:08:06

Lehet, hogy elbonyolítottam...

0=0(a-1)=(a2+a+1)(a-1)=a3-1, ahonnan a3=1. Innen pedig a2004=(a3)668=1, ennek a reciproka is 1, összegük 2, ez tehát a végeredmény. Hogy minek gépeltem az előbb ennyit???

Előzmény: [388] Sirpi, 2004-06-17 13:01:13
[388] Sirpi2004-06-17 13:01:13

Ez a 84. feladat poénos. A valós számok korében ugyanis nem teljesül a kezdeti feltétel, hiszen 0=a^2+a+1=(a+\frac 12)^2 + \frac 34 > 0, de ettől pl. a komplex számok körében meg lehet a feladatot oldani.

Viszont az is meg tudja oldani a feladatot, aki nem is hallott a komplex számokról.

Vezessük be a következő jelölést: f(k)=ak+a-k.

Ekkor f(k)f(l)=(ak+a-k)(al+a-l)=(ak+l+a-(k+l))+(ak-l+a-(k-l))=f(k+l)+f(k-l)

Vagyis: f(k+l)=f(k)f(l)-f(k-l) (*)

Mi éppen f(2004)-et akarjuk kiszámolni. Amit tudunk a fenti összefüggésen kívül, az az, hogy f(0)=2, f(1)=-1 és f(k)=f(-k) minden egész k-ra.

Állítás: f(k+3)=f(k) minden k-ra, ez indukcióval bizonyítható a (*) összefüggésből (ezt a részt, ami nem is túl nehéz, rábízom másra). Innen f(2004)=f(0)=2.

/persze tudom, hogy a egy harmadik egységgyök, és innen triviálisan kijön a 2, mint megoldás, de elemi módszerekkel próbáltam a feladatot megoldani./

Előzmény: [387] lorantfy, 2004-06-17 11:35:20
[387] lorantfy2004-06-17 11:35:20

84. feladat: Ha a2+a+1=0, akkor mennyi az értéke a

a^{2004}+\frac{1}{a^{2004}}

kifejezésnek?

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]    [94]    [95]    [96]    [97]    [98]    [99]    [100]    [101]    [102]    [103]    [104]    [105]    [106]    [107]    [108]    [109]    [110]    [111]    [112]    [113]    [114]    [115]    [116]    [117]    [118]    [119]    [120]    [121]    [122]    [123]    [124]    [125]    [126]    [127]    [128]    [129]    [130]    [131]    [132]    [133]    [134]    [135]    [136]    [137]    [138]    [139]    [140]    [141]    [142]    [143]    [144]    [145]    [146]    [147]    [148]    [149]    [150]    [151]    [152]    [153]    [154]    [155]    [156]    [157]    [158]    [159]    [160]    [161]