Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?

Fórum: Valaki mondja meg!

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]    [94]    [95]    [96]    [97]    [98]    [99]    [100]    [101]    [102]    [103]    [104]    [105]    [106]    [107]    [108]    [109]    [110]    [111]    [112]    [113]    [114]    [115]    [116]    [117]    [118]    [119]    [120]    [121]    [122]    [123]    [124]    [125]    [126]    [127]    [128]    [129]    [130]    [131]    [132]    [133]    [134]    [135]    [136]    [137]    [138]    [139]    [140]    [141]    [142]    [143]    [144]    [145]    [146]    [147]    [148]    [149]    [150]    [151]    [152]    [153]    [154]    [155]    [156]    [157]    [158]    [159]    [160]    [161]    [162]    [163]    [164]    [165]    [166]    [167]    [168]    [169]    [170]    [171]    [172]    [173]    [174]    [175]    [176]    [177]    [178]    [179]    [180]    [181]    [182]    [183]    [184]    [185]    [186]    [187]    [188]    [189]    [190]    [191]    [192]    [193]    [194]    [195]    [196]    [197]    [198]    [199]    [200]    [201]    [202]    [203]    [204]    [205]    [206]    [207]    [208]    [209]    [210]    [211]    [212]    [213]    [214]    [215]    [216]    [217]    [218]    [219]    [220]    [221]    [222]    [223]    [224]    [225]    [226]    [227]    [228]    [229]    [230]  

Szeretnél hozzászólni? Jelentkezz be.
[2044] Jhony2015-12-05 01:43:56

Tisztelt fórumozók ! - kérdésem ki hogyan bizonyítaná be,hogy az alábbi képlet alkalmas minden N természetes szám felírására :

(2)'a *(2b +1) = N vagyis 2 az ,,a" hatványon szorozva (2b+1) = N bocsánat,de kitéve a hatványkitevőt a következő üzenetet kaptam :,,Hiba: A ,,hatványkitevő" parancs csak matematikai módban használható " - tudván,hogy a és b eleme az N + (0) vagyis a és b eleme a természetes számok halmazának plusz nulla

- elképzelésem a ,,reductio ad absurdum" vagyis visszavezetés a lehetetlenre

(2)'0 *(2*0 +1) =/= 1 vagyis azaz 2 a nulla hatványon szorozva ... 1 *(0 +1) =/= 1 vagyis

1 =/= 1 ami tudjuk,hogy nem igaz,

- vélemények ?

- segítségeteket nagyon szépen köszönöm !

[2043] lorantfy2015-11-27 13:50:35

Megoldást szeretnél vagy csak segítséget? Feltehetjük, hogy minden matematikus egyformán, okosan gondolkodik. Ahogy biztosan megtudja, hogy maszatos lett leszáll és megmossa az arcát. Kezd el 2 emberrel és gondold végig a lehetőségeket, aztán ha kell növeld a számukat!

Előzmény: [2042] marcius8, 2015-11-23 08:16:55
[2042] marcius82015-11-23 08:16:55

Matematikusok egy vonaton születésnapi bulit rendeznek, és egy csokistortát majszolgatva összemaszatolják magukat. A kalauz jegyellenőrzés közben megjegyzi, hogy némelyik matematikusnak csokikrémes lett a füle. A matematikusok persze rögtön elszégyellik magukat, és ezután egy szót sem szólnak egymáshoz. Persze látják egymást, de magukat nem, ugyanis a vonaton nincsen tükör. A matematikusok a vonaton még megmosakodni sem tudnak, mert a vonaton nincs víz. A kalauz persze jó tanácsként közli a matematikusokkal, hogy minden megállóhelyen van mosakodásra lehetőség. Ezután a következő megállónál nem száll le egyetlen egy matematikus sem a vonatról, hogy megmosakodjon. A rákövetkező megállón sem száll le egyetlen egy matematikus sem a vonatról, hogy megmosakodjon. Viszont a harmadik megállónál néhány matematikus leszáll a vonatról, hogy megmosakodjon.

Kérdés: Hány matematikus szállt le a vonatról mosakodás céljából?

[2041] Lóczi Lajos2015-10-13 01:22:36

A test térfogatának kérdését tekintve &tex;\displaystyle -&xet; az alábbiak a felszínre "még inkább" vonatkoznak &tex;\displaystyle -&xet; számomra úgy tűnik, hogy a térfogat nem fejezhető ki elemi függvényekkel. Még konkrét speciális esetben sem sikerült.

Tekintsük pl. az &tex;\displaystyle R=2&xet;, &tex;\displaystyle r=1/2&xet; esetet. Ekkor a test nyolcadrésze látható az ábrán. Különféle darabolásokkal a térfogat felírható kettős-, illetve egyszeres integrálokkal, ám úgy tűnik, hogy ezeknek nincs elemi primitív függvénye.

Természetesen numerikusan az integrálok, s így a térfogat is számolható.

Meg tudnánk például határozni az &tex;\displaystyle R=2&xet;, &tex;\displaystyle r=1/2&xet; esetben a teljes test közelítő térfogatát?

Előzmény: [2040] marcius8, 2015-10-07 08:22:45
[2040] marcius82015-10-07 08:22:45

Meg tudja nekem valaki mondani annak a testnek a térfogatát és felszínét, amely három, egymással egybevágó, egymásra merőleges, ugyanazzal a középponttal rendelkező tóruszból áll. Ismert a tóruszok középkörének "R" sugara és ismert a tóruszok kör alakú síkmetszetének "r" sugara, ahol r<R.

[2039] marcius82015-09-28 10:56:20

Köszönöm az információkat. Bertalan Zoltán.

Előzmény: [2038] Kemény Legény, 2015-09-23 12:17:44
[2038] Kemény Legény2015-09-23 12:17:44

"- Van-e olyan négytagú (esetleg többtagú) számtani sorozat, amelynek minden tagja négyzetszám?"

Erre úgy tűnik, szintén tagadó a válasz: pl. Győri, Hajdu és Pintér cikke (Perfect powers from products of consecutive terms in arithmetic progression, Compositio Mathematica, 2009) alapján egy még erősebb állítás is igaz:

"We prove that for any positive integers x,d and k with gcd (x,d)=1 and 3<k<35, the product x(x+d)...(x+(k-1)d) cannot be a perfect power".

A cikk alapján úgy tűnik, az &tex;\displaystyle x(x+d)...(x+(k-1)d)=by^n, (x,d)=1&xet; egyenlet megoldását már Euler is vizsgálta a &tex;\displaystyle b=1, k=4, n=2&xet; esetre. Sőt Erdős sejtése az, hogy &tex;\displaystyle k>3&xet; esetén sosem lehet egy (rel. prímekből álló) számtani sorozat &tex;\displaystyle k&xet; egymást követő elemének szorzata teljes hatvány.

Előzmény: [2035] marcius8, 2015-09-23 11:39:32
[2037] Kemény Legény2015-09-23 11:58:07

Pontosítok: nincs megoldása a nem-0 egész számok körében.

Előzmény: [2036] Kemény Legény, 2015-09-23 11:55:46
[2036] Kemény Legény2015-09-23 11:55:46

"- Van-e olyan háromtagú (esetleg többtagú) számtani sorozat, amelynek minden tagja köbszám (esetleg negyedik hatvány, esetleg ötödik hatvány, ..... stb.)"

Egy gyors keresés után ezt az arxiv-os Ribet-cikket találtam.

A Conjecture 1 alapján pedig úgy tűnik, az az általános sejtés (Dénes, 1952), hogy számtani sorozatot csak triviális módon alkothatnak páratlan prímkitevő esetén.

Ebben a Theorem 3 azt állítja, hogy &tex;\displaystyle a^p+2^{\alpha}b^p+c^p=0&xet;-nak nincs megoldása az egész számok körében, ha &tex;\displaystyle 2\le \alpha\le p&xet;. Továbbá &tex;\displaystyle a^p+2b^p+c^p=0&xet;-nek nincs olyan relatív prím egész megoldása, ahol abc páros lenne. Illetve a Theorem 4 p=4k+1 alakú kitevőre igazolja a sejtést.

Előzmény: [2035] marcius8, 2015-09-23 11:39:32
[2035] marcius82015-09-23 11:39:32

Sok olyan háromtagú számtani sorozat van, amelynek tagjai négyzetszámok. (Ilyen például 1, 25, 49 vagy 49, 169, 289 vagy 49, 289, 529 vagy 961, 1681, 2401 stb....) Az ilyen háromtagú sorozatok tagjainak előállítása visszavezethető pitagoraszi számhármasokra, és az ilyen sorozatok tagjaiból pitagoraszi számhármasok állíthatóak elő.

De:

- Van-e olyan négytagú (esetleg többtagú) számtani sorozat, amelynek minden tagja négyzetszám?

- Van-e olyan háromtagú (esetleg többtagú) számtani sorozat, amelynek minden tagja köbszám (esetleg negyedik hatvány, esetleg ötödik hatvány, ..... stb.)

Tisztelettel: Bertalan Zoltán.

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]    [94]    [95]    [96]    [97]    [98]    [99]    [100]    [101]    [102]    [103]    [104]    [105]    [106]    [107]    [108]    [109]    [110]    [111]    [112]    [113]    [114]    [115]    [116]    [117]    [118]    [119]    [120]    [121]    [122]    [123]    [124]    [125]    [126]    [127]    [128]    [129]    [130]    [131]    [132]    [133]    [134]    [135]    [136]    [137]    [138]    [139]    [140]    [141]    [142]    [143]    [144]    [145]    [146]    [147]    [148]    [149]    [150]    [151]    [152]    [153]    [154]    [155]    [156]    [157]    [158]    [159]    [160]    [161]    [162]    [163]    [164]    [165]    [166]    [167]    [168]    [169]    [170]    [171]    [172]    [173]    [174]    [175]    [176]    [177]    [178]    [179]    [180]    [181]    [182]    [183]    [184]    [185]    [186]    [187]    [188]    [189]    [190]    [191]    [192]    [193]    [194]    [195]    [196]    [197]    [198]    [199]    [200]    [201]    [202]    [203]    [204]    [205]    [206]    [207]    [208]    [209]    [210]    [211]    [212]    [213]    [214]    [215]    [216]    [217]    [218]    [219]    [220]    [221]    [222]    [223]    [224]    [225]    [226]    [227]    [228]    [229]    [230]