Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?

Fórum: Valaki mondja meg!

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]    [94]    [95]    [96]    [97]    [98]    [99]    [100]    [101]    [102]    [103]    [104]    [105]    [106]    [107]    [108]    [109]    [110]    [111]    [112]    [113]    [114]    [115]    [116]    [117]    [118]    [119]    [120]    [121]    [122]    [123]    [124]    [125]    [126]    [127]    [128]    [129]    [130]    [131]    [132]    [133]    [134]    [135]    [136]    [137]    [138]    [139]    [140]    [141]    [142]    [143]    [144]    [145]    [146]    [147]    [148]    [149]    [150]    [151]    [152]    [153]    [154]    [155]    [156]    [157]    [158]    [159]    [160]    [161]    [162]    [163]    [164]    [165]    [166]    [167]    [168]    [169]    [170]    [171]    [172]    [173]    [174]    [175]    [176]    [177]    [178]    [179]    [180]    [181]    [182]    [183]    [184]    [185]    [186]    [187]    [188]    [189]    [190]    [191]    [192]    [193]    [194]    [195]    [196]    [197]    [198]    [199]    [200]    [201]    [202]    [203]    [204]    [205]    [206]    [207]    [208]    [209]    [210]    [211]    [212]    [213]    [214]    [215]    [216]    [217]    [218]    [219]    [220]    [221]    [222]    [223]    [224]    [225]    [226]    [227]    [228]    [229]    [230]  

Szeretnél hozzászólni? Jelentkezz be.
[2228] Erben Péter2020-02-25 17:52:37

Igen, ez egy sokkal emészthetőbb megközelítés, amikor majdnem mindegyik valószínűség egyenlő.

Előzmény: [2227] jonas, 2020-02-25 14:16:57
[2227] jonas2020-02-25 14:16:57

Valóban várhatóan 127/10 = 12.7 dobás kell.

Közönséges 6 oldalú kockánál várhatóan \(\displaystyle 6/6 + 6/5 + 6/4 + 6/3 + 6/2 + 6/1 \) dobás kell, hogy mind a 6 oldal előjöjjön. Ha már öt oldalt kidobtunk, akkor a hatodik átlagosan 6 dobásból jön ki.

A huncut kockánál különböztessük meg továbbra is a hat oldalt egymástól. Várhatóan \(\displaystyle 6/6 + 6/5 + 6/4 + 6/3 + 6/2 \) dobás kell ahhoz, hogy öt oldal előjöjjön, és addig biztosan dobálni kell a kockát. Ekkor a kocka minden oldalára egyformán 1/6 a valószínűsége, hogy pont az az oldal nem fordult még elő. 2/6 valószínűséggel tehát ez az oldal valamelyik 5 pontos oldal: ebben az esetben már öt szám előjött, és nem kell tovább dobnunk. 4/6 valószínűséggel valami más a kimaradó oldal, mert már mindkét ötös oldalt láttuk: ekkor tovább kell dobni, amíg a kimaradó egy oldal is előjön, vagyis átlagosan még \(\displaystyle 6/1 \) dobásig. Ez összesen átlagosan \(\displaystyle 6/6 + 6/5 + 6/4 + 6/3 + 6/2 + 4/6\cdot6/1 \) dobás, ez pedig \(\displaystyle 127/10 \).

[2226] marcius82020-02-24 19:28:48

megint tanultam valami újat. köszi. Egyébként ez egy bűvésztrükk matekos részéhez kellett. A trükk lényege, hogy ezzel a cinkelt kockával választok ki hat kártyából a második kártyát, mégpedig úgy hogy azt nem dobom ki a cinkelt kockával. Ha olyan lenne a cinkelt kocka, hogy rögtön és mindig 2-est hozza ki, na az gyanús lenne. De így nem az.

Előzmény: [2224] Erben Péter, 2020-02-24 19:02:49
[2225] Erben Péter2020-02-24 19:28:03

Javítás: skatulya-elv -> szita formula

Előzmény: [2224] Erben Péter, 2020-02-24 19:02:49
[2224] Erben Péter2020-02-24 19:02:49

A feladat a kupongyűjtő probléma azon esete, amikor a valószínűségek nem egyenlők.

A cinkelt dobókockával való dobás megfeleltethető egy kupon megvásárlásának. Tegyük fel, hogy \(\displaystyle n\) különböző ,,kupon'' létezik, amelyek \(\displaystyle p_1\), \(\displaystyle p_2\), ..., \(\displaystyle p_n\) valószínűséggel fordulnak elő (ahol \(\displaystyle p_1+\ldots+p_n=1\)). Célunk, hogy egy teljes kupon-gyűjteményt állítsunk össze, és kérdésünk, hogy várhatóan hány kupont kell ehhez megvennünk.

A konkrét feladatban \(\displaystyle n=5\), a valószínűségek pedig \(\displaystyle \frac{1}{6}\), \(\displaystyle \frac{1}{6}\), \(\displaystyle \frac{1}{6}\), \(\displaystyle \frac{1}{3}\), \(\displaystyle \frac{1}{6}\).

Az általános feladat megoldása megtalálható például Marco Ferrante és Monica Saltalamacchia The Coupon Collector’s Problem című írásában.

(Vázlatosan.) Jelentse az \(\displaystyle X_i\) valószínűségi változó azt, hogy hányadik húzásnál kaptuk meg először az \(\displaystyle i\) értéket. (Az egyszerűség kedvéért mostantól feltételezzük, hogy az 1,2,...,\(\displaystyle n\) értékek jöhetnek ki. Ez a feltételezés olvashatóbbá teszi az indexeket, és nem változat a feladat lényegén.)

A fenti jelöléssel a teljes gyűjteményt \(\displaystyle \max_{i\in \{1,\ldots,n\}} X_i\) lépésben állítjuk össze. Keressük \(\displaystyle \max X_i\) várható értékét.

Felhasználjuk a skatulya-elvhez analóg alábbi azonosságot:

\(\displaystyle \max_{i}\{x_i\} =\sum_{i=1}^n x_i - \sum_{i<j}\min\{x_i,x_j\} +\sum_{i<j<k}\min\{x_i,x_j,x_k\} - \cdots + \left(-1\right)^{n+1}\min\{x_1,\ldots,x_n\}, \)

továbbá a várható érték linearitását.

\(\displaystyle E[\max X_i] = \sum E[X_i] - \sum_{i<j} E[\min\{X_i, X_j\}] + \sum_{i<j<k} E[\min\{X_i,X_j,X_k\}] - \ldots \)

Vegyük még észre, hogy az \(\displaystyle X_i\), \(\displaystyle \min\{X_i,X_j\}\), \(\displaystyle \min\{X_i,X_j,X_k\}\), ...valószínűségi változók mind geometriai eloszlásúak, rendre \(\displaystyle p_i\), \(\displaystyle p_i+p_j\), \(\displaystyle p_i+p_j+p_k\), ...paraméterrel.

Például \(\displaystyle \min\{X_1, X_2\}\) azt jelenti, hogy mikor jött ki először egy kupon az \(\displaystyle \{1,2\}\) halmazból, vagyis mikor következett be először egy \(\displaystyle p_1+p_2\) valószínűségű esemény.

Mivel a \(\displaystyle p\) valószínűségű esemény első bekövetkezésének várható értéke \(\displaystyle \frac{1}{p}\), ezért a kupongyűjtő probléma megoldása:

\(\displaystyle E[\max X_i] = \sum_{i}\frac{1}{p_i}- \sum_{i<j}\frac{1}{p_i+p_j} + \sum_{i<j<k}\frac{1}{p_i+p_j+p_k}-\ldots+(-1)^{n+1}\frac{1}{p_1+\ldots+p_n} \)

A cinkelt kockára mondjuk \(\displaystyle p_1=p_2=p_3=p_4=\frac{1}{6}\) és \(\displaystyle p_5=\frac{1}{3}\). Alkalmazva a fenti formulát a keresett várható lépésszámra \(\displaystyle \frac{127}{10}\) jön ki.

Előzmény: [2223] marcius8, 2020-02-24 18:55:55
[2223] marcius82020-02-24 18:55:55

Miért? Előre is köszönöm az indoklást vagy útmutatást.

Előzmény: [2222] Erben Péter, 2020-02-24 18:04:05
[2222] Erben Péter2020-02-24 18:04:05

\(\displaystyle \frac{127}{10}\)

Előzmény: [2221] marcius8, 2020-02-20 20:09:00
[2221] marcius82020-02-20 20:09:00

Van egy szabályos dobókockám, minden lapjára egyforma valószínűséggel esik. Kicsit huncut vagyok, és a 2-es oldalt átváltoztatom 5-ösre. Így a kockán lesz két 5-ös oldal, de nem lesz 2-es oldal. Addig dobok a kockával, amíg az 1, 3, 4, 5, 6 számok mindegyike előkerül. Mennyi lesz a dobások számának várható értéke?

[2219] sereva2019-11-21 08:02:28

Nagyon köszönöm a segítségeteket.

Előzmény: [2218] sakkmath, 2019-11-21 01:56:56
[2218] sakkmath2019-11-21 01:56:56

Javallott tanulmányozni a GOOGLE (kép)találatait a "Fibonacci spirál" beírására.

Mindkét ábra hibája az, hogy a négyzetekbe rajzolandó Fibonacci spirál megszakad (a két ábrán más-más helyen), s így a Fibonacci számok sorrendjét már nem követi a két ábra. A két hiba úgy javítható, hogy a rossz helyekre került négyzeteket áthelyezzük a megfelelő helyekre.

1)

http://talaldki.com/wp-content/uploads/2017/11/Fibonacci3.jpg esetében a megoldás: A legnagyobb négyzetet kivágjuk és eltoljuk jobbra, vízszintesen, \(\displaystyle 55+34=89\) egységgel. Ebben az új helyzetben a 34 oldalhosszúságú négyzet jobb alsó sarkába érkező Fibonacci spirál már át tud lépni az áthelyezett legnagyobb négyzetbe.

2)

http://talaldki.com/wp-content/uploads/2018/08/Fibonacci6.jpg, erre pedig lásd az alábbi, kijavított ábrarészletet:

Előzmény: [2217] SmallPotato, 2019-11-21 00:24:37

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]    [94]    [95]    [96]    [97]    [98]    [99]    [100]    [101]    [102]    [103]    [104]    [105]    [106]    [107]    [108]    [109]    [110]    [111]    [112]    [113]    [114]    [115]    [116]    [117]    [118]    [119]    [120]    [121]    [122]    [123]    [124]    [125]    [126]    [127]    [128]    [129]    [130]    [131]    [132]    [133]    [134]    [135]    [136]    [137]    [138]    [139]    [140]    [141]    [142]    [143]    [144]    [145]    [146]    [147]    [148]    [149]    [150]    [151]    [152]    [153]    [154]    [155]    [156]    [157]    [158]    [159]    [160]    [161]    [162]    [163]    [164]    [165]    [166]    [167]    [168]    [169]    [170]    [171]    [172]    [173]    [174]    [175]    [176]    [177]    [178]    [179]    [180]    [181]    [182]    [183]    [184]    [185]    [186]    [187]    [188]    [189]    [190]    [191]    [192]    [193]    [194]    [195]    [196]    [197]    [198]    [199]    [200]    [201]    [202]    [203]    [204]    [205]    [206]    [207]    [208]    [209]    [210]    [211]    [212]    [213]    [214]    [215]    [216]    [217]    [218]    [219]    [220]    [221]    [222]    [223]    [224]    [225]    [226]    [227]    [228]    [229]    [230]