Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?

Fórum: Valaki mondja meg!

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]    [94]    [95]    [96]    [97]    [98]    [99]    [100]    [101]    [102]    [103]    [104]    [105]    [106]    [107]    [108]    [109]    [110]    [111]    [112]    [113]    [114]    [115]    [116]    [117]    [118]    [119]    [120]    [121]    [122]    [123]    [124]    [125]    [126]    [127]    [128]    [129]    [130]    [131]    [132]    [133]    [134]    [135]    [136]    [137]    [138]    [139]    [140]    [141]    [142]    [143]    [144]    [145]    [146]    [147]    [148]    [149]    [150]    [151]    [152]    [153]    [154]    [155]    [156]    [157]    [158]    [159]    [160]    [161]    [162]    [163]    [164]    [165]    [166]    [167]    [168]    [169]    [170]    [171]    [172]    [173]    [174]    [175]    [176]    [177]    [178]    [179]    [180]    [181]    [182]    [183]    [184]    [185]    [186]    [187]    [188]    [189]    [190]    [191]    [192]    [193]    [194]    [195]    [196]    [197]    [198]    [199]    [200]    [201]    [202]    [203]    [204]    [205]    [206]    [207]    [208]    [209]    [210]    [211]    [212]    [213]    [214]    [215]    [216]    [217]    [218]    [219]    [220]    [221]    [222]    [223]    [224]    [225]    [226]    [227]    [228]    [229]    [230]  

Szeretnél hozzászólni? Jelentkezz be.
[631] sakkmath2008-10-07 11:40:12

Szia! Ez a feladat a The American Mathematical Monthly 2008/júniusi számában jelent meg azzal a "kis" különbséggel, hogy az egyenlőtlenséget az összes valós t-re és az összes \alpha\ge2-re kell bebizonyítani.

A megoldásokat a Monthly 2008. október 31-ig kéri a nyomtatott lapban közölt címre. Ez arra utal, hogy (üzleti okokból) elsősorban a lap vásárlóitól várják a megoldásokat. Ezek miatt úgy vélem, az lenne a helyes, ha az esetleges megoldó csak november 1-től tenné nyilvánossá a megoldását bárhol, s így pl. itt, a Fórumban is. Alább mellékelem az interneten talált, idevágó laprészletet.

(Az Érdekes matekfeladatok [2727]-es hozzászólásában általad közölt feladat szintén "él" és egy másik matematikai MAGAZIN várja a megoldását 2008. november 1-ig.)

Üdvözlettel: sakkmath

Előzmény: [602] Gyöngyő, 2008-09-28 13:55:06
[630] Lóczi Lajos2008-10-07 00:41:27

Sikerült végül bizonyítást adni az egyenlőtlenségre? (Több átfogalmazással próbálkoztam, de egyelőre hiába.)

Előzmény: [602] Gyöngyő, 2008-09-28 13:55:06
[629] Róbert Gida2008-10-06 22:51:05

Nem írtad, de feltételezem, hogy T a természetes egészeken van értelmezve, így a,b\ge0-t is feltehetem.

1. eset: a+b<1. Tetszőleges N0 egészre és elég nagy d számra telejesül, hogy T(n)\led*n minden n<N0-ra. Legyen most d>\frac {1}{1-a-b} és még olyan nagy, hogy az előbbi feltétel is teljesül, azaz T(n)<d*n, ha n<N0

Indukcióval tegyük fel, hogy k<n-re T(k)\led*k. Ekkor k=n-re is teljesül ez: a feltételt használva: T(n)\len+T(an)+T(bn)\len+adn+bdn=(1+d(a+b))n\ledn teljesül, mert d(1-a-b)>1 igaz, d-re tett feltevés miatt.

2. eset: Ha a+b>1, akkor létezik olyan c>1 valós szám, melyre T(n)=nc-vel definiált sorozat esetén T teljesíti a feltételt, továbbá T nyilván nem lineáris (mert c>1). c egyébként az a szám, melyre, ha a,b<1, akkor ac+bc=1 teljesül, ha a\ge1 vagy b\ge1, akkor tetszőleges c>1 jó.

3. eset Ha a+b=1, ekkor nem tudom mi van.

Előzmény: [623] Algo, 2008-10-06 16:51:21
[628] Doom2008-10-06 22:47:36

Szia!

Igen, jól gondolkodsz. Annyi megjegyzést fűznék hozzá, hogy figyeld meg a Fibonacci sorozat kialakulását, ez még sokszor jól jöhet...

Előzmény: [627] Algo, 2008-10-06 21:09:15
[627] Algo2008-10-06 21:09:15

Kedves Jonas és Doom!

A feladat ismertetése előtt 2-es számrendszerben próbáltam felírni a számokat, s ehhez társítani az optimális pénzmennyiséget. Ötleteteket végiggondoltam, s valóban 8 Ft felhasználásával meg tudom mondani, melyik számra gondolt. Egyfajta önmagamat is meggyőzésképpen: 1Ft---> 1 szám 2FT---> 2 szám 3Ft---> 3 szám 4Ft---> 5 szám 5Ft---> 8 szám 6Ft---> 13 szám 7Ft---> 21 szám 8Ft---> 34 szám

A megfelelő pénzek esetén visszavezetjük egy korábbi estre(pl.: 6Ft-ra úgy jön a 13 szám, hogy 8-5 arányban osztjuk szét, s 8 számhoz pedig legfeljebb 5 Ft-ra van szükségem)

Még egyszer köszönöm Jonasnak és Doomnak, hogy ötletüket megosztották.

Üdv.:Algo

Ui.: Remélem helyes a gondolatmenetem.:)

[626] jonas2008-10-06 20:19:27

Az elsőhöz azt gondold meg, hány számot tudsz biztosan kitalálni 1 forintért, 2 forintért, 3 forintért, 4 forintért, stb.

Előzmény: [623] Algo, 2008-10-06 16:51:21
[625] Doom2008-10-06 20:18:23

Szia!

1-eshez egy kis segítség: gondold úgy végig, hogy n forint hány számra elég? Például 1 ft-ból 1 számból tudod kitalálni a megfelelőt, 2 forintból már 2-ből, 3 ft-ból 3-ból, 4-ből már 5 szám közül... és itt megállnék, mert lelőném a poént. :P Ha így se megy, akkor adok még segítséget, de jobb lenne magadtól rájönni.

Előzmény: [623] Algo, 2008-10-06 16:51:21
[624] S.Ákos2008-10-06 17:03:22

köszönöm szépen. de, igen, azt akartam írni.

Előzmény: [622] Ali, 2008-10-06 10:37:09
[623] Algo2008-10-06 16:51:21

Sziasztok! Íme 2 feladat amivel nem tudok mit kezdeni:

1,Jancsi gondolt egy számra 1 és 32 között. Barchobával kell kitalálni a számot. Jani az igen válaszokért 1 Ft-ot, míg a nem válaszokért 2 Ft-ot kér. Legkevesebb hány Ft-ra lesz szükségünk a szám kitalálásához? Személy szerint 9 Ft-ig jutottam, de tudom hogy nem ez az optimális.

2, Milyen a,b számokra kapunk lineáris becslést a T(n)<=n+T(an)+T(bn) rekurzióból?

Aki meg tudja mondani, annak nagyon szépen megköszönném. Sajnos rengeteget foglalkoztam velük, de nem tudtam mit kezdeni velük. Várom válaszotokat. Előre is köszönöm.

Üdv.:Algp

[622] Ali2008-10-06 10:37:09

Nem azt akartad írni, hogy

\log_a \frac{3abc}{ab+ac+bc}+\log_b \frac{3abc}{ab+ac+bc}+\log_c \frac{3abc}{ab+ac+bc}\ge 3

, mert az is igaz ?

A biz. ahogy Jónás elkezdte, utána kihasználni hogy log fv. konkáv, végül pedig a harmonikus és számtani közép közti egyenlőtlenség.

Előzmény: [620] S.Ákos, 2008-10-05 21:37:26

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]    [94]    [95]    [96]    [97]    [98]    [99]    [100]    [101]    [102]    [103]    [104]    [105]    [106]    [107]    [108]    [109]    [110]    [111]    [112]    [113]    [114]    [115]    [116]    [117]    [118]    [119]    [120]    [121]    [122]    [123]    [124]    [125]    [126]    [127]    [128]    [129]    [130]    [131]    [132]    [133]    [134]    [135]    [136]    [137]    [138]    [139]    [140]    [141]    [142]    [143]    [144]    [145]    [146]    [147]    [148]    [149]    [150]    [151]    [152]    [153]    [154]    [155]    [156]    [157]    [158]    [159]    [160]    [161]    [162]    [163]    [164]    [165]    [166]    [167]    [168]    [169]    [170]    [171]    [172]    [173]    [174]    [175]    [176]    [177]    [178]    [179]    [180]    [181]    [182]    [183]    [184]    [185]    [186]    [187]    [188]    [189]    [190]    [191]    [192]    [193]    [194]    [195]    [196]    [197]    [198]    [199]    [200]    [201]    [202]    [203]    [204]    [205]    [206]    [207]    [208]    [209]    [210]    [211]    [212]    [213]    [214]    [215]    [216]    [217]    [218]    [219]    [220]    [221]    [222]    [223]    [224]    [225]    [226]    [227]    [228]    [229]    [230]