Vígh Viktor
Rovatunkban minden hónapban valamilyen szórakoztató matematikai fejtörőt mutatunk be. Ezek között fontos helyet foglalnak el a különböző kirakós játékok, topológiai feladványok, ördöglakatok és a matematikát felhasználó bűvészmutatványok. Manapság szinte mindent meg lehet találni az interneten, de az igazi élményt az adja, ha a feladatokat magunk oldjuk meg, a bűvészmutatványok trükkjeit mi találjuk ki, és a szükséges kellékeket is mi tervezzük meg és készítjük el. Próbáljuk meg a feladatokat továbbgondolni, általánosítani, igyekezzünk új feladatokat kitalálni.
Rovatunkban minden hónapban valamilyen szórakoztató matematikai fejtörőt mutatunk be. Ezek között fontos helyet foglalnak el a különböző kirakós játékok, topológiai feladványok, ördöglakatok és a matematikát felhasználó bűvészmutatványok.
Manapság szinte mindent meg lehet találni az interneten, de az igazi élményt az adja, ha a feladatokat magunk oldjuk meg, a bűvészmutatványok trükkjeit mi találjuk ki, és a szükséges kellékeket is mi tervezzük meg és készítjük el. Próbáljuk meg a feladatokat továbbgondolni, általánosítani, igyekezzünk új feladatokat kitalálni.
Legutóbb szeptemberi számunkban foglalkoztunk bújócska típusú ördöglakatokkal. Elkészítésre ajánlottunk olvasóinknak egy pálcás változatot, ahol a ,,szokásos'' trükk nem működik, mivel az átbújtatás után (lásd ábra) a pálca nem fér át a hurkon a zsinór rövidsége miatt. Azonban vegyük észre, hogy ebben az átbújtatott állapotban valójában annyi a célunk, hogy a hurok a dupla zsinór másik oldalára kerüljön. Ezt úgy is elérhetjük, ha a téglatest formájú ,,alapot'' bújtatjuk át a hurkon.
Ha egy négyzetet a két átlójával felosztunk négy háromszögre, majd ezeket kiszínezzük három színnel az összes lehetséges módon, akkor megkapjuk a négyzetes színdominókat.
A színdominókat először a múlt század elején írta le Percy Alexander MacMahon, a kalandos életű matematikus. Ő rögtön megadott több nehéz feladatot is hozzájuk.
G. 896. Öt ellenállást kapcsolunk az ábra szerint egy 24 V-os feszültségforrás \(\displaystyle A\) és \(\displaystyle B\) kimenetére. Az ellenállások: \(\displaystyle R_1=40~\Omega\), \(\displaystyle R_2=50~\Omega\), \(\displaystyle R_3=R_4=10~\Omega\) és \(\displaystyle R_5=20~\Omega\).
a) Határozzuk meg az áramkör eredő ellenállását a kapcsoló zárt és nyitott állásában!
b) Mennyivel változik meg az \(\displaystyle R_4\) ellenállás teljesítménye, ha a zárt kapcsolót kinyitjuk?
(4 pont)
Közli: Veres Dénes, Szolnok
A KöMaL pontversenyeihez és Ifjúsági Ankétjához a MATFUND Alapítvány részére a Nemzeti Tehetség Program a 2024. július 1. és 2025. augusztus 31. közötti időszakra tizenhétmillió forint támogatást biztosított (NTP-TMV-M-24-M-0003).
A Nemzeti Kulturális Alap a KöMaL kiadását 1 900 000 forinttal (NKA-LAP), a 2023. október 29-30-án megrendezett KöMaL Ankét megszervezését 2 000 000 forinttal (NKA (201108/03268),továbbá a 2024. július első hetében megszervezett KöMaL nyári matematika és fizika tehetséggondozó tábor megrendezését 2 000 000 forinttal (201108/03268) támogatta. A nyári tábor idén sem jöhetett volna létre az AIT támogatása nélkül. Köszönjük továbbá a dombóvári Hotel Európának, hogy sokadik éve biztosít helyszínt táborunknak.
Azok is figyelmesen olvassák el a Versenykiírást, akik tavaly már részt vettek versenyünkben.
Idén is matematikából, fizikából és informatikából indítunk versenyeket. Egyénileg, illetve csapatban is lehet versenyezni, a versenyek 9 hónapon keresztül, 2025. szeptemberétől 2026. június elejéig tartanak. Minden hónapban új feladatokat tűzünk ki, és a megoldásokat a következő hónap elejéig küldheted be. A verseny végeredményét a 2026. szeptemberi számunkban hirdetjük ki. A díjakat jövő ősszel, a KöMaL Ifjúsági Ankéton adjuk át.
Kevés az olyan egyenlettípus, amely zárt alakban megoldható, a legtöbb esetben valamilyen numerikus megoldáshoz kell folyamodnunk. Mindig lehetőségünk van a próbálgatásra, amit ügyesen végrehajtva megbízható eredményre juthatunk, de bizonyos esetekben a megoldás megkeresésére szisztematikus, könnyen automatizálható eljárás is a rendelkezésünkre áll. Az alábbiakban egy ilyet mutatunk be. Ez az
típusú egyenletek esetében alkalmazható, és az \(\displaystyle f(x)\) függvények egy széles osztályában eredményes. A módszer lényege, hogy az
\(\displaystyle x_{n+1}=f(x_n) \)
képzési szabály segítségével egy sorozatot generálunk.
Az Eötvös Loránd Fizikai Társulat 2025. évi Eötvös-versenye október 17-én délután 3 órai kezdettel tíz magyarországi helyszínen került megrendezésre. Az ünnepélyes eredményhirdetésre és díjkiosztásra 2025. november 28-án délután került sor az ELTE TTK Eötvös termében. Megemlékeztünk az 50 és 25 évvel ezelőtti Eötvös-versenyről, ismertettük az akkori feladatokat és a győztesek nevét. Az 50 évvel ezelőtti díjazottak közül Virosztek Attila, a 25 évvel ezelőttiek közül Pozsgay Balázs volt jelen – ők röviden beszéltek a versennyel kapcsolatos emlékeikről és a pályafutásukról. Az 50 évvel ezelőtti II. díjas Zimányi Gergely videóüdvözletet, a 25 évvel ezelőtti I. díjas Buruzs Ádám pedig szöveges üzenetet küldött a jelenlévőknek.
25. alkalommal adták át a Rátz Tanár úr életműdíjakat összesen nyolc kiváló tanár részére:
Kántor Sándorné, Dr. Pintér Klára, Ábrám László, Horváth Norbert, Karasz Gyöngyi, Nagy István, Bódis Bertalan, Mándics Dezső.
A kitüntetettek részletes bemutatása és az évente megújuló felhívás megtalálható a Rátz Tanár Úr Életműdíj hivatalos honlapján: https://www.ratztanarurdij.hu/
Idén Miskolc vendégül a matematikatanárok csapatát a Rátz László Vándorgyűlés keretei között. Négy szekcióban zajlottak a szemináriumok és az előadások, ezen kívül átadták a Bolyai János Matematikai Társulat Beke Manó Emlékdíjait és a Reményi díjakat az országos matematikaversenyeken kiváló eredményt elért tanulók tanárainak.
M. 443. Mobiltelefon fényérzékelőjét használva mutassuk meg, hogy a fényintenzitás inverz négyzetesen függ egy pontszerű fényforrástól mért távolságtól! Hogyan válasszuk a kísérleti körülményeket ahhoz, hogy minél pontosabban tudjuk igazolni ezt az összefüggést?
Közli: Vadász Gergely, Solymár