[1042] Hosszejni Darjus | 2009-12-25 22:33:40 |
sziasztok! számológéppel szoktam próbálkozni magyarórán, hogy érdekes dolgokat találjak, és azt vettem észre (pontosabban arra következtetek az eredmények alapján), hogy ha x tart a végtelenbe és n egy valós szám, akkor
lim(x*tan(n/x))=lim(x*sin(n/x))=n.
Tudnátok erről mondani vmit (hogy hogyan lehetne bizonyítani, vagy hogy ez hülyeség, stb.)?
előre is köszi
|
|
|
[1040] Yvi | 2009-12-15 22:41:36 |
Köszönöm! Lenne még egy feladat, amivel nem boldogulok, íme: határozza meg az alábbi függvény lokális szélsőérték helyeit és esetleges nyeregpontjait: F(x,y,)=ex3+y2+12xy ahol x3+y2+12xy az e kitevői és x a köbön, y a négyzeten van. (még nem nagyon megy a képletszerkesztő használata)
|
Előzmény: [1039] kallosbela, 2009-12-15 21:36:13 |
|
|
[1038] Yvi | 2009-12-15 21:04:41 |
Sziasztok, van egy kérdésem hogyan deriváljuk 4/xy-t parciálisan xre ha az egy rendes tört? kell a 4-et is deriválni? köszi előre is!
|
|
|
|
[1035] Higgs | 2009-12-10 23:30:15 |
Üdv!
Létezik olyan képlet amivel a 2 négyzetszám összegeként felírható számok számát 0, és n között meg lehet határozni?
|
|
|
[1033] jenei.attila | 2009-11-11 13:34:10 |
Ha képezed a a3+(a+1)3+...+(a+7)3 összeget, akkor elvégezve a köbre emeléseket és az összevonásokat, majd teljes köbre kiegészítve (számításokat nem részletezve) kapod, hogy a fenti összeg (2a+7)3+126a+441. Tehát nagyjából 2a+7 köbe. Ha a>-3,5 akkor kicsit nagyobb nála, ha a<-3.5, akkor kisebb nála. Az első esetben a kifejezésünk kisebb lesz mint (2a+8)3, ha teljesül a (2a+7)3+126a+441<(2a+8)3, vagyis két szomszédos köbszám közé fog esni, ezért nem lehet köbszám. Megoldva a fenti másodfokú egyenlőtlenséget azt kapjuk, hogy ha a<-3.49 vagy a>6.49 akkor az érték kisebb lesz mint (2a+8)3, ha viszont a>-3.5, nagyobb lesz mint (2a+7)3. Hasonlóan a másik esetben (ha a<-3.5) felírva a (2a+6)3<(2a+7)3+126a+441 egyenlőtlenséget, azt kapjuk, hogy az összeg értéke két szomszédos köbszám értéke közé esik, ha a<-13.49 vagy a>-3.51. Ezeket összevetve, és figyelembe véve hogy a egész, kapjuk, hogy -13a kell hogy teljesüljön, ha az összeg köbszám.
|
Előzmény: [1032] jonas, 2009-11-11 13:06:20 |
|
|
|
|
[1029] m2mm | 2009-11-08 19:24:08 |
Ja, tényleg elnéztem. De x=5, y=4 megoldás... 2b2+1=3k2-re visszatérve: b0=1, b1=11, bn=10bn-1-bn-2 sorozat a megoldása az egyenletnek. b0 az er. feladatnak nem megoldása, mert x0=0, de a többi jó.
|
Előzmény: [1027] HoA, 2009-11-08 18:13:59 |
|
|
[1027] HoA | 2009-11-08 18:13:59 |
Talán mégis. Ugyanis az x=y=0 megoldást nem zártuk ki, mégis elveszett útközben. Nekem helyett jön ki, de innen 6b2+3=c2=9k2 ;2b2+1=3k2 következik, ami b=k=1 -re még jó. 3k2-1 páros, k páratlan, k=2l+1, amiből b2=6l2+6l+1 adódik , körbeértünk. Talán elfogadva és a továbbiakból kizárva x=y=0 -t a legkisebb pozitív y-t kéne keresni, amiből kijönne, hogy csak akkor létezik, ha létezik nála kisebb pozitív l, vagyis sohasem.
|
Előzmény: [1025] m2mm, 2009-11-08 15:17:00 |
|
|
|
[1024] gabor7987 | 2009-11-08 14:47:08 |
Ehhez a feladathoz hozzá sem tudok kezdeni. Tudna valaki segíteni?
Adjuk meg az összes olyan köbszámot, amely előáll nyolc szomszédos egész szám köbének az összegeként.
|
|
|
[1022] Willy | 2009-11-08 12:50:49 |
Szerintem meg elég egyértelmű, hogy mit kell csinálni. Leni vedd észre azt, hogy az F=m.a az egy olyan speciális alakja, amikor a tömeg állandó. Ez az általánosabb (látsd Landau1). Az F-et meg nyilván erőtörvényből kapjuk... és pont.
Amúgy elég érdekes feladat lenne az, ha tömegváltozást feltételeznénk. Vajon fellép-e bárminemű rezonancia?
|
Előzmény: [1020] leni536, 2009-11-08 10:46:32 |
|
[1021] Euler | 2009-11-08 11:48:21 |
Sziasztok! Van egy diofantikus egyenletem, amelyet a pozitiv egész számok halmazán kellene megoldani,ha tud valaki, sagitsen,előre is köszönöm..Az egyenlet: 2x2+2x=3y2+3y
|
|
[1020] leni536 | 2009-11-08 10:46:32 |
Nekem nem tetszett nagyon ez a feladat, egy folytonosan változó tömegnél nincs sok esélye a tömegnövekménynek csak együtt mozogni az eredeti tömeggel, akár az F=ma-val, vagy az -vel számolunk. Mivel nem tudjuk, hogy honnan jön a plusz tömeg, ezért nem tudhatjuk, hogy melyiket kell alkalmazni. Persze a feladat elég egyszerűnek minősülne, ha az F=ma-t kellene alkalmazni, így lehet sejteni, hogy a másikra van szükség, de akkor sem megalapozott, hogy az a helyes.
|
|
|
[1018] Alma | 2009-11-06 02:23:23 |
Ennek a feldatnak a megoldását pont megírtam tex-ben, úgyhogy feltöltöm. Lehet, hogy valamit nagyon elnéztem, mert nekem gyanúsan egyszerűnek tűnik (nem nagyképűségből mondom, hanem a többi feladathoz képest).
Írjuk fel a test mozgásegyenletét!
Behelyettesítve a feladat által megadott tömeg(idő) függvényt, a következő egyenlethez jutunk:
Elvégezve a deriválást és az egyszerűsítéseket:
ahol a test sebessége. Ez a sebességre nézve egy lineáris elsőrendű differenciálegyenlet. Szeparálva a változókat:
Mindkét oldalt határozottan integrálva a fellövés pillanatától t idővel későbbig:
Ebből kifejezve a sebességet a felhajítástól eltelt idő függvényében:
felhasználva, hogy v0=g a feladat szövege szerint. A test akkor van pályájának tetőpontján, amikor sebessége zérussá válik. Ezt a következőképp írhatjuk fel egyenlettel:
ami akkor teljesül, ha tmax=ln2. Így a test tmax=ln2 idő múlva jut pályájának tetőpontjára. Ekkor a test tömege a megadott képlet alapján
|
|