Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?

Fórum: Valaki mondja meg!

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]  

Szeretnél hozzászólni? Jelentkezz be.
[1898] Inverz2013-10-11 11:37:18

Egy feladat megoldásában szeretnék segítséget kérni. Az 1976-os matematika OKTV 2. fordulójában az 1. feladat volt a 3. kategóriás diákoknak: Adott egy háromszög. Határozzuk meg a belsejében - esetleg valamelyik oldalán - azt a pontot, amelynek az oldalakra vonatkozó tükörképei által meghatározott háromszög területe maximális!

[1897] w2013-10-06 09:06:07

Melyik feladat bizonyításához akarod ezt felhasználni?

Előzmény: [1888] Sinobi, 2013-10-05 13:15:24
[1896] w2013-10-06 09:02:37

Aha. Jó, akkor racionálisokra legalább már működik :).

Előzmény: [1895] Sinobi, 2013-10-06 00:23:47
[1895] Sinobi2013-10-06 00:23:47

d is, és a1-A1/N is 1/N közelében vannak. Ez így nem lesz jó.

Előzmény: [1894] w, 2013-10-05 22:43:17
[1894] w2013-10-05 22:43:17

Ha valaki talál hibát, szóljon, még kezdő vagyok ebben a műfajban.

Nézzük először racionális számok esetén.

Legyenek a számok (bővített nevezővel): \frac{A_i}N i=1,2,...,n. Ezekhez egy olyan d-t fogunk megadni, melyre d=\frac1N+\phi. A \phi>0 számot később fogjuk megadni.

Ugyanis ekkor \frac{A_i}N=A_i\cdot (\frac1N+\phi)-A_i\phi=A_id-A_i\phi. Azt szeretnénk, hogy \frac{A_i}N mod d, azaz d-Ai\phi akármilyen közel legyen a d-hez, vagyis

\frac{d-A_i\phi}d=1-\frac{A_i\phi}{\frac1N+\phi}>1-\epsilon

akármilyen kicsi \epsilon>0 esetén fennállhasson, alkalmas \phi esetén. Azaz minden pici \epsilon-hoz létezik olyan \phi, hogy ... Kifejezzük \phi-t:

\frac{NA_i\phi}{1+N\phi}<\epsilon

NAi\phi<\epsilon+\epsilonN\phi

N\phi(Ai-\epsilon)<\epsilon

\phi<\frac{\epsilon}{N(A_i-\epsilon)}

Tehát ekv. egyenlőtl. miatt minden \epsilon-hoz van olyan \phi, hogy. Ugyanis véges sok egyenlőtlenséget vezettünk le, i=1,2,...,n-re.

Például, ha kapom, hogy \frac26, \frac36, \frac56, \frac86, akkor mondjuk \epsilon=0.1-hez \phi=0,002 jó választás lesz.

Amikor irracionális számokkal dolgoztam, akkor iszonyatos pontossággal közelítek. Azaz, veszek akármilyen nagy pontosságot minden ai esetén --> pi/qi rac. számok, de ezek pedig a nevezőket bővítve Ai/(lkkt(qi)) alakúak lesznek, amire lezúzom a fenti számolást. Mivel nagyon pontos vagyok, ezért ez a közelítés elhanyagolható \epsilon és \phi-hez képest.

Előzmény: [1891] Sinobi, 2013-10-05 20:46:03
[1893] Róbert Gida2013-10-05 21:08:55

(1-\frac{const}{q^{\frac 1n}})*n és \varepsiloni=q*xi-pi akart lenni, és persze nálam is d alakja speciális d=\frac 1q=\frac 1N ( w jelölésével).

Előzmény: [1892] Róbert Gida, 2013-10-05 20:54:21
[1892] Róbert Gida2013-10-05 20:54:21

Amit te írsz az egy x-re működik. Több x-nél, már lehetséges, hogy a nagyon jól közelítő nevezők teljesen mások, nincs egy nagyon jól közelítő azonos nevező.

Szimultán approximációnak nevezik a problémát, lásd http://www.shunjiito.com/paper/49109yasutomi1030.pdf (introduction első 5 sora).

ezzel (az egyébként trivi) állítással úgy nézem, hogy (1-\frac {const}{d^{\frac 1n}})*n jön ki jobb oldalra az eredeti (n-1) helyett.. (itt a konstans már csak n-től függ). Amiben kell még szórakozni az eredeti bizonyításnál, hogy neked az kell, hogy \epsiloni=d*xi-pi nem csak, hogy kicsi, hanem még negatív is (itt pi egész).

Előzmény: [1890] w, 2013-10-05 14:30:26
[1891] Sinobi2013-10-05 20:46:03

Ezt nem teljesen értem. Az N-et honnan kapod meg? Tetszőleges N-re, azaz minden d=1/N(+\phi)-re szerintem ez nem igaz. (vagy nem látom, hogy \phi-re minek kell teljesülnie). (Majd 10.-e után több időm lesz ezzel foglalkozni.)

[1890] w2013-10-05 14:30:26

Szerintem igaz lesz. Tehát az a kérdés, hogyha a1,a2,...,an>0 valós számok, létezik-e olyan d>0 valós, mellyel

\sum_{i=1}^n r_i(d)^2>(n-1)d^2.

Itt ri(d)\in[0;d) az a valós szám, melyhez létezik k egész szám, mellyel ai=kd+ri(d) \foralli=1,2,...,n.

Most ezt először átrendezzük, hogy átlássuk a szerkezetét:

\sum_{i=1}^n \left(\frac {r_i(d)}d\right)^2>n-1,

azaz nekünk jó közel kell hoznunk a \frac{r_i(d)}d hányadosokat az 1-hez, de úgy, hogy az 1-et még ne érjük el.

A megoldási ötletem az volna, hogy tfh. 0<a1\lea2\le...\lean, és csináljunk racionális approximációt: a_i\in\left(\frac{A_i}N-\epsilon;\frac{A_i}N+\epsilon\right) legyen \foralli, ahol N, Ai egészek. Vegyük d:=\frac1N+\phi-t, ekkor ai<Aid, ai/d<Ai kellene nekünk, ahol ai/d nagyon közel van Ai-hez. De a_i/d\approx\frac{A_i/N}{1/N+\phi}, így ez talán jó lesz, hisz \epsilon,\phi>0 akármilyen kicsi, de egymáshoz képest akármilyen nagy. (Rendesen le kellene tisztítani határértékügyileg, ez még elvi hibás is lehet.)

Előzmény: [1888] Sinobi, 2013-10-05 13:15:24
[1889] Sinobi2013-10-05 13:18:56

*pozitív valós számok esetén.

Előzmény: [1888] Sinobi, 2013-10-05 13:15:24
[1888] Sinobi2013-10-05 13:15:24

Igaz-e, hogy minden nemnegatív a1, a2, ... an valós számok esetén létezik olyan d valós szám, hogy \sum (ai~mod~d)^2~>(n-1) \cdot d^2? (a modulo pozitív értéket ad vissza). Ebből már következne egy másik állítás, amiből egy megint másik, amiből a feladat, de ez ehhez hozzá se tudok nyúlni, nem is látszik igaznak :( Van valakinek ötlete? Másik becslése, ellenpéldája, stb?

[1887] koma2013-10-03 22:47:30

köszi mindenkinek a hozzászólását, tényleg nem volt egy "nehéz" feladat, de valahogyan nem jöttem mégsem rá... sebaj, most már okosabb lettem, köszönöm:)

[1886] w2013-10-03 20:04:50

Ez igazából ugyanaz a megoldás: a3-3ab=35, ab=30 után a3=(x+y)3=125, x+y=5. Köszi viszont, hogy leírtad. (Direkt azért úgy mutattam be, mert kicsit általánosabb, pl. alkalmas az x+y=3, x4+y4=17 egyenletrendszer megoldására is.)

Fálesz Mihálynak is köszönöm a megoldási ötletét/módszerét, nagyon érdekes volt.

Előzmény: [1884] Alekszandrov, 2013-10-03 11:20:52
[1885] Fálesz Mihály2013-10-03 13:10:08

Egy további, bár kétségtelenül kevésbé elegáns lehetőség, hogy a konstansokat elimináljuk, aztán a kapott homogén polinomot szorzattá alakítjuk:

6(x3+y3)-7(x2y+y2x)=6.35-7.30=0

(x+y)(2x-3y)(3x-2y)=0.

...

Előzmény: [1884] Alekszandrov, 2013-10-03 11:20:52
[1884] Alekszandrov2013-10-03 11:20:52

Van másik megoldás is, nem kell ehhez a és b! :-)

A második egyenletet szorozd meg hárommal, majd add össze az elsővel, így x+y köbe egyenlő 125-tel, tehát x+y=5. Majd a második egyenletet szorzattá alakítva, az x+y helyébe beírva az 5-öt, kapjuk: xy=6 Ez a két egyenlet már ránézésre is megoldható!

Előzmény: [1883] koma, 2013-09-30 10:02:34
[1883] koma2013-09-30 10:02:34

köszi szépen a segítséget

Előzmény: [1882] w, 2013-09-29 22:42:37
[1882] w2013-09-29 22:42:37

Szia Koma!

Az 1) feladatod klasszikus példa az ún. elemi szimmetrikus polinomok alkalmazására. Tehát az ilyen szimmetrikus kifejezéseket ki lehet fejezni a:=x+y és b:=xy segítségével: 35=x3+y3=(x+y)(x2-xy+y2)=(x+y)[(x+y)2-3xy]=(x+y)3-3xy(x+y)=a3-3ab és 30=x2y+xy2=xy(x+y)=ab. Innen már nem olyan nehéz befejezni.

2) 3) Vedd észre, hogy a2\ge0 és |a|\ge0, ahol egyenlőség épp akkor áll fenn, ha a=0.

Előzmény: [1881] koma, 2013-09-29 20:13:57
[1881] koma2013-09-29 20:13:57

Az alábbi feladatok megoldásában kérném a segítségeteket:

1,Oldjuk meg az alábbi egyenletrendszert! x3+y3=35, b, x2y+y2x=30

ugyebár a= (x+y)(x2-xy+y2) b= xy(x+y), de hogyan tovább?

2, (x2-1)2+(x4-1)2=0 látom, hogy másodfokú egyenletre vezet, de nem látom a megoldását

3, abs (x+y-13) + abs (y-z-5) abs (y-z-2) =0

nagyon szépen köszönöm előre is a segítséget, és további szép estét kívánok!

[1880] koma2013-09-28 20:58:01

köszi szépen a cikkeket, valóban elírtam...

további szép estét!

Előzmény: [1879] w, 2013-09-28 19:30:16
[1879] w2013-09-28 19:30:16

A rekurzív képletet rosszul írtad be. Amúgy ha az 1) egy elsőrendű, 2) egy másodrendű rekurzió, akkor itt megtalálhatod a megoldást.

Előzmény: [1878] koma, 2013-09-28 18:59:33
[1878] koma2013-09-28 18:59:33

Sziasztok, akadt két problémám, nagyon megköszönném, ha valaki kisegítene.:)

1, Határozza meg az a1=1,an+1=2an (n term szám) rekurzív sorozat képletét.

2,Mutassuk meg, hogy az alábbi rekurzív sorozat monoton csökkenő: a1=2,a2=1,an+1=5an-6an-1,(n\ge2)

köszönöm szépen a segítséget.

[1877] bianka2013-09-28 10:25:42

szia!

egy gyors kérdés (skicc)

köszi! ...bianka

[1876] gyula602013-09-17 20:11:06

Javaslom az x=\frac{1-t}{1+t} helyettesítés alkalmazását, amely után a kanonikus alakra hozás jobban megvalósítható.

A keresett primitív fügvényt a következő két f1(x) és f2(x) függvény összege állítja elő:

f_1(x)=-\frac{1}{\sqrt2}arc\tg\bigg[\frac{\root\of{x^2+x+1}}{\sqrt2(x-1)}\bigg],

f_2(x)=-\frac{1}{\sqrt6}\ln\bigg[\frac{\sqrt2(x+1)-\root\of{3(x^2+x+1)}}{\root\of{(x^2-x+1)}}\bigg].

Előzmény: [1874] juantheron, 2013-09-02 21:12:42
[1875] Fálesz Mihály2013-09-04 06:52:34

Try y=\sqrt{x^2+x+1}-x.

Előzmény: [1874] juantheron, 2013-09-02 21:12:42
[1874] juantheron2013-09-02 21:12:42

\int \frac{1}{(x^2-x+1)\sqrt{x^2+x+1}}dx

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]