Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?

Fórum: Valaki mondja meg!

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]  

Szeretnél hozzászólni? Jelentkezz be.
[1006] Sirpi2009-11-04 08:52:37

Szerintem is azon múlik, hogy honnan jön a plusz tömeg. Ha feltételezzük, hogy a testre rárakódó tömeg rögtön "fel van gyorsítva", azaz a megnövekedett rész is felveszi a test pillanatnyi sebességét, akkor ez a plusz tömeg nyilván nem fogja befolyásolni a test pályáját. Ha viszont a plusz tömeg nyugalmi állapotban kerül rá a testre, akkor az a sebességet csökkenteni fogja.

Az igazi gond az a feladattal, hogy ilyen váratlan tömegnövekedés nem nagyon szokott előfordulni a valóságban, ezért nehéz megfogni a dolgot.

Előzmény: [1005] SmallPotato, 2009-11-03 21:30:08
[1005] SmallPotato2009-11-03 21:30:08

Számomra is ez tűnik teljesen kézenfekvőnek. Mégis aggályaim vannak. Ha a test tömege nő (és ez nincs befolyással a sebességviszonyokra és a pályára), akkor mozgási és helyzeti energiája egyaránt nő az eredeti tömegű állapothoz képest. Honnan származik ez az energiatöbblet?

(Bár, gyanítom, ez épp azzal a kérdéssel azonos, hogy "honnan származik a tömegnövekedés?" Végülis, ha a tömeg növekedését fedezi valami, akkor energiamegmaradás szempontjából sem zárt a rendszer.)

Előzmény: [1004] Higgs, 2009-11-03 21:05:50
[1004] Higgs2009-11-03 21:05:50

Függőlegesen feldobott tömegpont pályája, csak a kezdősebességtől, és a rá ható gravitációs gyorsulástól függ. Ha a tömege folyamatosan nő, azzal egyenes arányban nő a rá ható gravitációs erő, vagyis a rá ható gravitációs gyorsulás állandó. Tehát a 2 eset leírása azonos. Ez jutott eszembe, bár lehet rossz.

[1003] jonas2009-11-03 20:28:41

Elrontottam, helyesen


\binom{n}{0} - \binom{n}{1} + \binom{n}{2} - \dots + (-1)^{m-1} \binom{n}{m-1} = (-1)^{m-1} \binom{n-1}{m-1}

(Ez lényegében az (5.16)-os képlet a Konkrét Matematikában.)

Előzmény: [1001] jonas, 2009-11-03 15:10:25
[1002] bily712009-11-03 17:59:11

Ez igaz, nem vettem figyelembe, hogy nem zárt rendszerről van szó.

A függőlegesen felfelé dobott test mozgási energiája folyamatosan átalakul helyzeti energiává, tehát lassul a test.

Amikor elengedjük a testet, már nem végzünk munkát rajta, tehát van egy kezdeti mozgási energiája: E=\frac12mv^2, ami állandó, ha nem hat rá erő, és függ a tömegtől, ha nő a tömeg, akkor lassul a test.

Tehát a testet egyszer lassítja g, a gravitációs gyorsulás, (lassulás), mely független a test tömegétől, másodszor lassulnia kell a tömegnövekedés miatt, tehát a lassulás nagyobb mértékű, mint, ha csak a gravitációból adódna.

De ha nem jól tudom, nyugodtan javítsatok ki, nem akarok senkit félrevezetni.

De mitől nő a tömeg?

Előzmény: [999] SmallPotato, 2009-11-03 14:48:05
[1001] jonas2009-11-03 15:10:25

Aha, most már értem: az alternáló összeget lehet egyszerűsíteni.


\binom{n}{0} - \binom{n}{1} + \binom{n}{2} - \dots + (-1)^{m-1} \binom{n}{m-1} = (-1)^{m-1} \binom{n-1}{m}

Előzmény: [993] gabor7987, 2009-10-31 22:01:49
[1000] jonas2009-11-03 14:58:11

Szép feladat. Nem látom, hogyan kéne hozzáfogni.

Előzmény: [993] gabor7987, 2009-10-31 22:01:49
[999] SmallPotato2009-11-03 14:48:05

Az impulzusmegmaradásnak feltételei vannak (elsősorban a zárt rendszer), amelyek itt nem teljesülnek. Gondolj bele: a nehézségi erőnek kitett test állandó tömeg esetén folyamatosan gyorsul, tehát már ekkor is v1\neqv2, azaz mv1\neqmv2.

Előzmény: [998] bily71, 2009-11-03 11:47:30
[998] bily712009-11-03 11:47:30

Az impulzus megmaradás tétele szerint \sum_i{I_i}=c., azaz állandó, és mivel egy testünk van, ezért m1v1=m2v2. Ezek szerint, ha nő a tömeg csökken a sebesség, tehát befolyásolja a mozgást. De mitől nő a tömeg?

Előzmény: [996] HoA, 2009-11-03 11:10:31
[997] Higgs2009-11-03 11:43:33

Mivel a verseny véget ért, már nyugodtan kérdezhetem:D http://ortvay.mafihe.hu/2009/H09.pdf linken található az 5. feladat!

[996] HoA2009-11-03 11:10:31

A súlyos és a tehetetlen tömeg egyenlősége miatt nem kell, hogy befolyásolja. Persze kérdés, hogyan képzeljük a folyamatos tömegnövekedést. Mi az oka?

Előzmény: [995] Higgs, 2009-11-02 21:54:04
[995] Higgs2009-11-02 21:54:04

Üdv!

Ha feldobok egy tömegpontot aminek a tömege folyamatosan nő, akkor ez a mozgását befolyásolja, és ha igen, miért?

[994] béjé2009-11-02 18:20:42

Sziasztok!

Tudna nekem valaki segíteni abban, hogy a februári és márciusi KöMaL-t hol tudnám beszerezni? Konkrétan Besenyei Ádám: A számtani-mértani közép és egyéb érdekességek I-II. c. cikkeire lenne szükségem. Előre is köszönöm.

[993] gabor79872009-10-31 22:01:49

Sziasztok a következő feladathoz szeretnék segítséget kérni:

Igazoljuk, hogy bármely 1\leqm\leqn esetén:

n\cdot \left( \binom{n}{0} - \binom{n}{1} + \binom{n}{2} - ... +(-1)^{m-1} \binom{n}{m-1} \right)

osztható m-mel!

[992] Kányúr2009-10-19 00:44:46

Kérdezd erről kedves bily71 barátunkat a szomszédos "A Goldbach-sejtésről" c. topikban.

Előzmény: [990] Higgs, 2009-10-18 17:23:38
[991] Higgs2009-10-18 17:35:32

http://mek.niif.hu/01800/01849/rtf/hatvany04.rtf

[990] Higgs2009-10-18 17:23:38

Üdv! A Fermat tétel-nek ismert egyszerű, esetleg elemi bizonyítása?

[989] jonas2009-10-17 18:47:48

A Szalay: Számelmélet tankönyvet javaslom. Ez egy középiskolásoknak íródott vékony könyv, és nagyon jó könyv. Ebben feltehetően benne van a bizonyítás.

Előzmény: [987] gabor7987, 2009-10-16 22:19:36
[988] R.R King2009-10-16 23:28:45

Ez az állítás a Wilson-tétel. Ha a bizonyítása érdekel, szerintem nézz utána pl. a wikipédián

Üdv. R.R

Előzmény: [987] gabor7987, 2009-10-16 22:19:36
[987] gabor79872009-10-16 22:19:36

Egy probléma belátásához be kéne bizonyítanom, hogy (p-1)!+1 osztható p-vel, ha p egy prím. Tudna nekem ebben valaki segíteni?

[986] vogel2009-09-18 16:30:50

hello, ezt mindenhova beírhatod, de célravezetőbb visszaolvasni a fórumon, azért van.

Előzmény: [985] derivált, 2009-09-17 19:14:43
[985] derivált2009-09-17 19:14:43

hellosztok nem rossz de pontosan miről is van most szó? már mint mi a feladat? :)

[984] HoA2009-09-17 16:39:34

Addig is egy kis segítség: Attól függ, mi az I() . Ha például x és y lineáris függvénye, mondjuk

I(x,y)=2x+3y+4

, akkor \frac{dI(x,y)}{dx} = 2 , \frac{dI(x,y)}{dy} = 3 , I(x+a,y+b) = 2(x+a) + 3 (y+b) + 4 = I(x,y) + 2a + 3b = I(x,y) +\frac{dI(x,y)}{dx} a + \frac{dI(x,y)}{dy} b tetszőleges valós a-ra és b-re.

Előzmény: [982] pdm, 2009-09-15 02:51:10
[983] pdm2009-09-15 09:36:46

Újra fogom fogalmazni. Üdv.

[982] pdm2009-09-15 02:51:10

 I(x+a,y+b)= I(x,y) + \frac {dI(x,y)} {dx}a + \frac {dI(x,y)} {dy}b

Hogy lehet az "a"-t és a "b"-t meghatározni?

Kösz.

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]