Szerk
Youtube csatornánkon közzétettük a 2025-ös KöMaL Ifjúsági Ankéton elhangzott előadások többségének felvételét. Sajnos mind a kép, mind a hangfelvétel minősége gyengére sikerült, ezért elnézést kérünk.
Az Eötvös Loránd Fizikai Társulat 2025. évi Eötvös-versenye október 17-én délután 3 órai kezdettel tíz magyarországi helyszínen került megrendezésre. Az ünnepélyes eredményhirdetésre és díjkiosztásra 2025. november 28-án délután került sor az ELTE TTK Eötvös termében. Megemlékeztünk az 50 és 25 évvel ezelőtti Eötvös-versenyről, ismertettük az akkori feladatokat és a győztesek nevét. Az 50 évvel ezelőtti díjazottak közül Virosztek Attila, a 25 évvel ezelőttiek közül Pozsgay Balázs volt jelen – ők röviden beszéltek a versennyel kapcsolatos emlékeikről és a pályafutásukról. Az 50 évvel ezelőtti II. díjas Zimányi Gergely videóüdvözletet, a 25 évvel ezelőtti I. díjas Buruzs Ádám pedig szöveges üzenetet küldött a jelenlévőknek.
Kevés az olyan egyenlettípus, amely zárt alakban megoldható, a legtöbb esetben valamilyen numerikus megoldáshoz kell folyamodnunk. Mindig lehetőségünk van a próbálgatásra, amit ügyesen végrehajtva megbízható eredményre juthatunk, de bizonyos esetekben a megoldás megkeresésére szisztematikus, könnyen automatizálható eljárás is a rendelkezésünkre áll. Az alábbiakban egy ilyet mutatunk be. Ez az
típusú egyenletek esetében alkalmazható, és az \(\displaystyle f(x)\) függvények egy széles osztályában eredményes. A módszer lényege, hogy az
\(\displaystyle x_{n+1}=f(x_n) \)
képzési szabály segítségével egy sorozatot generálunk.
1. Oldja meg a valós számok halmazán a következő egyenletet!
\(\displaystyle \sqrt{x^2-5x-14}\cdot\lvert5-x\rvert\cdot\sin\left(2x+\dfrac{\pi}{6}\right)\cdot\lg(9-x)=0 \)
2. a) Tízes számrendszerben hány jegyű szám az \(\displaystyle 5^{29}\)?
b) Egy mértani sorozat első tagja \(\displaystyle 5^{-29}\), kvóciense 5. Az első tagtól kezdve legalább hány tagot kell ...
A hagyományoknak megfelelően közöljük a Nemzetközi Matematikai Diákolimpia feladatainak megoldásait. A megoldások leírására idén is a magyar csapat tagjait kértük meg.
A második napi megoldások Holló Martin, Szakács Ábel és Czanik Pál munkái.
1. Két pozitív szám számtani közepe \(\displaystyle 205\), a számtani és mértani közepük különbsége \(\displaystyle 160\). Melyik ez a két szám?
2. Számítsa ki \(\displaystyle x \in \mathbb{R}\) értékét, ha \(\displaystyle \overrightarrow{AB} \cdot \overrightarrow{AC}=0\), valamint \(\displaystyle A(x;7)\), \(\displaystyle B(4;-1)\) és \(\displaystyle C(x-11; -4)\).
1. Oldja meg a valós számok halmazán az alábbi egyenleteket.
a) \(\displaystyle \dfrac{x}{x-1}+\dfrac{2x+1}{x+1}=\dfrac{3x+5}{x^{2}-1}\), (5 pont)
b) \(\displaystyle \cos 2x+2\sin x+3=0\). (5 pont)
A Hanoi tornyai egy olyan feladvány, amelyben három függőleges pálcán van \(\displaystyle n\) db, különböző külső átmérőjű lyukas korong [2]. A hagyományos kiindulási állapotban a bal szélső pálcán van az összes korong, fentről lefelé növekvő méretben, a célállapot pedig ugyanez a korongpiramis, csak a jobb szélső pálcán. Két egyszerű szabályt kell betartani: minden lépésben valamelyik pálca legfelső korongját tehetjük egy másik pálca tetejére, továbbá semelyik korongot sem szabad nála kisebb korongra tenni. Igazolható, hogy a szükséges lépésszám \(\displaystyle 2^n - 1\), azaz minden egyes korong hozzáadásával lényegében megduplázódik.
Ezúttal részletesebben egy 1928. januárjában kitűzött feladatról és annak az ugyanazon év márciusi számában megjelent megoldásáról, illetve további, szintén ehhez a témához kapcsolható feladatokról lesz szó. Mint később látjuk, ezek mindegyike szorosan kapcsolódik az e számban megoldott B. 5440. feladathoz.