Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?
Fizika — Mintamegoldás

A P. 5640. fizika feladat megoldása

Szerk

P. 5640. A Kanári-szigetek legnagyobb városában, Las Palmasban található egy Európában egyedülálló kiállítás, amely a Föld vizeinek élővilágát mutatja be. A kiállítás egyik attrakciója egy \(\displaystyle 400\) köbméteres, függőleges, henger alakú tengeri akvárium, melynek karbantartását búvárok végzik. Vízszintesen körbenézve az akvárium falának hányad részén lát ki az a búvár, aki az \(\displaystyle R\) sugarú henger szimmetriatengelyétől \(\displaystyle d\) távolságra van? A tengervíz törésmutatója \(\displaystyle n\).

(5 pont)

Közli: Vigh Máté, Herceghalom

Megoldás. A fénysugarak útja megfordítható, így a búvár abba az irányba lát ki, amerre egy fénysugár ki tud lépni az akváriumból. Ennek az a feltétele, hogy az akvárium falánál a fénysugár beesési szöge ne legyen nagyobb a teljes visszaverődés \(\displaystyle \alpha=\arcsin\tfrac{1}{n}\) határszögénél. Az akváriumot felülnézetben mutató ábrán ez a pirossal jelölt \(\displaystyle P_1'P_1\) és \(\displaystyle P_2'P_2\) íveken teljesül.

A keresett arány az ívekhez tartozó középponti szögek összegének és a teljes szögnek a hányadosa:

\(\displaystyle \eta=\frac{2(\beta+\delta)}{2\pi}=\frac{\beta+\delta}{\pi}. \)

A \(\displaystyle \delta\) szög az \(\displaystyle OBP_2\) háromszög külső szöge, így

\(\displaystyle \delta=\alpha+\gamma. \)

A szinusztételt az \(\displaystyle OBP_1\) és \(\displaystyle OBP_2\) háromszögekre is felírva:

\(\displaystyle \frac{R}{d}=\frac{\sin(\gamma+\varepsilon)}{\sin\alpha}=\frac{\sin\gamma}{\sin\alpha}, \)

amiből egyrészt

\(\displaystyle \gamma=\pi-(\gamma+\varepsilon)=\alpha+\beta, \)

másrészt

\(\displaystyle \sin\gamma=\frac{R}{d}\sin\alpha=\frac{R}{nd}. \)

Mindezek alapján a keresett arány:

\(\displaystyle \eta=\frac{\beta+\delta}{\pi}=\frac{\alpha+\beta+\gamma}{\pi}=\frac{2\gamma}{\pi}=\frac{2}{\pi}\arcsin\frac{R}{nd}. \)

A kifejezés csak \(\displaystyle d\geq\tfrac{R}{n}\) értékeknél értelmezhető. Ha \(\displaystyle d<\tfrac{R}{n}\), akkor \(\displaystyle \eta=1\), azaz a búvár minden irányba kilát az akváriumból.

Fekete Lúcia (Budapest V. Ker. Eötvös J. Gimn., 12. évf.)

9 dolgozat érkezett. Helyes 3 megoldás. Kicsit hiányos (3–4 pont) 2, hiányos (2 pont) 2, nem versenyszerű 2 dolgozat.

Fizika — Mintamegoldás

Az M. 443. mérési feladat megoldása

M. 443. Mobiltelefon fényérzékelőjét használva mutassuk meg, hogy a fényintenzitás inverz négyzetesen függ egy pontszerű fényforrástól mért távolságtól! Hogyan válasszuk a kísérleti körülményeket ahhoz, hogy minél pontosabban tudjuk igazolni ezt az összefüggést?

Közli: Vadász Gergely, Solymár

Matematika — Érettségi gyakorló

Gyakorló feladatsor emelt szintű matematika érettségire (2025/8)

1. Két pozitív szám számtani közepe \(\displaystyle 205\), a számtani és mértani közepük különbsége \(\displaystyle 160\). Melyik ez a két szám?

2. Számítsa ki \(\displaystyle x \in \mathbb{R}\) értékét, ha \(\displaystyle \overrightarrow{AB} \cdot \overrightarrow{AC}=0\), valamint \(\displaystyle A(x;7)\), \(\displaystyle B(4;-1)\) és \(\displaystyle C(x-11; -4)\).

Pontverseny — Versenykiírás

Versenykiírás a KöMaL 2025–2026. évi pontversenyeire

Azok is figyelmesen olvassák el a Versenykiírást, akik tavaly már részt vettek versenyünkben.

Idén is matematikából, fizikából és informatikából indítunk versenyeket. Egyénileg, illetve csapatban is lehet versenyezni, a versenyek 9 hónapon keresztül, 2025. szeptemberétől 2026. június elejéig tartanak. Minden hónapban új feladatokat tűzünk ki, és a megoldásokat a következő hónap elejéig küldheted be. A verseny végeredményét a 2026. szeptemberi számunkban hirdetjük ki. A díjakat jövő ősszel, a KöMaL Ifjúsági Ankéton adjuk át.

Matematika — Érettségi gyakorló

Megoldásvázlatok a 2025/9. szám matematika gyakorló feladatsorához

Oldja meg a valós számok halmazán a következő egyenletet!

\(\displaystyle \sqrt{x^2-5x-14}\cdot\lvert5-x\rvert\cdot\sin\left(2x+\dfrac{\pi}{6}\right)\cdot\lg(9-x)=0 \)

Megoldás. Az értelmezési tartomány a logaritmikus kifejezés miatt \(\displaystyle 9-x>0\), így \(\displaystyle x<9\), továbbá a négyzetgyökös kifejezés miatt \(\displaystyle x^2-5x-14\ge 0\), amiből \(\displaystyle x\leq -2\) vagy \(\displaystyle x\geq 7\) ...

Matematika — Érettségi gyakorló

Gyakorló feladatsor emelt szintű matematika érettségire (2026/1)

1. a) Oldja meg a következő egyenletet az egész számok halmazán:

\(\displaystyle (x^2-9)\left(\dfrac{1}{x-3}-\dfrac{1}{x+3}-1\right)=9+x \)

b) Egy négyszög \(\displaystyle \alpha\) szögére teljesül, hogy \(\displaystyle 4\sin^2\alpha-3=0\). Mekkora lehet az \(\displaystyle \alpha\) szög nagysága?

Matematika — Rejtvények, ördöglakatok

Rejtvények, ördöglakatok: Színdominóktól a Wang csempékig

Ha egy négyzetet a két átlójával felosztunk négy háromszögre, majd ezeket kiszínezzük három színnel az összes lehetséges módon, akkor megkapjuk a négyzetes színdominókat.

A színdominókat először a múlt század elején írta le Percy Alexander MacMahon, a kalandos életű matematikus. Ő rögtön megadott több nehéz feladatot is hozzájuk.

Matematika — Rátz László vándorgyűlés

Tanárverseny középiskolában tanító tanároknak

A Rátz László vándorgyűlésen rendezett verseny feladatai

1. Az Azariah koncertre jegyet vásárlók sorában Dávid elölről a 2024., hátulról a 2025. várakozó. Hány ember áll a sorban?

(A) 4047;  (B) 4048;  (C) 4049;  (D) 4050;  (E) 4051

2. Dia és Viki egy táblán meglát néhány számot. Dia minden számhoz hozzáad 3-at, majd megállapítja, hogy a kapott számok összege 45. Viki az eredetileg a táblán szereplő számokat megszorozza 3-mal, és meglepődve állapítja meg, hogy az általa kapott számok összege is 45. Hány szám volt felírva a táblára a lányok érkezésekor?

(A) 10;  (B) 9;  (C) 8;  (D) 6;  (E) 5

Matematika — Közélet

75 éves a Matematikai Kutatóintézet

A magyar matematika egyik fellegvára – az egyetemek mellett – a Rényi Alfréd Matematikai Kutatóintézet. Az intézetet 1950-ben alapították a Magyar Tudományos Akadémia Alkalmazott Matematikai Intézete néven. A kommunista ideológia szerint ,,a tudomány közvetlen termelőerővé válik'', ennek megfelelően az intézet feladata a népgazdaság fejlődésének segítése volt a tudomány eszközeivel. Az intézet vezetésével az akkor mindössze 29 éves sztármatematikust, Rényi Alfrédot bízták meg. Rényi bölcsen hagyta, hogy a kötelező feladatok elvégzése mellett az intézetbe toborzott kiváló matematikusok elméleti kérdésekkel is foglalkozzanak, hiszen az alkalmazott és az elméleti matematika összetartozik, együtt művelve a két irányt sokkal eredményesebb lesz a munka. Ezt az Akadémia vezetésével is sikerült elfogadtatnia, ennek megfelelően már 1955-ben a Matematikai Kutató Intézet elnevezés került a cégtáblára. Rényi Alfréd sajnos korán, 49 évesen elhunyt. Az intézet 1999 óta viseli alapító igazgatójának a nevét.

Matematika — Cikk

Tait tételének bizonyítása

A KöMaL 2025 szeptemberi számában (Tait tétele és a 3-reguláris gráfok – a B. 5403. feladat háttere) kimondtuk Tait alábbi tételét.

Tétel (Tait tétele). Legyen \(\displaystyle G\) egy 3-reguláris, hídélmentes, síkbarajzolt gráf. Ekkor \(\displaystyle G\) tartományai \(\displaystyle 4\)-színezhetők akkor és csak akkor, ha élei \(\displaystyle 3\)-színezhetők.

A tételben \(\displaystyle k\)-színezésen olyan színezést értünk, amely \(\displaystyle k\)-féle színt használ, és az egymással szomszédos tartományok (illetve élszínezés esetén az egy csúcsban találkozó élek) mindig különböző színűek.

A szeptemberi számba nem került be a tétel bizonyítása (azzal a céllal, hogy akinek van kedve, gondolkodhasson rajta), ezt most pótoljuk.

Matematika — Rejtvények, ördöglakatok

Rejtvények, ördöglakatok: Emelt szintű bújócska II.

Legutóbb szeptemberi számunkban foglalkoztunk bújócska típusú ördöglakatokkal. Elkészítésre ajánlottunk olvasóinknak egy pálcás változatot, ahol a ,,szokásos'' trükk nem működik, mivel az átbújtatás után (lásd ábra) a pálca nem fér át a hurkon a zsinór rövidsége miatt. Azonban vegyük észre, hogy ebben az átbújtatott állapotban valójában annyi a célunk, hogy a hurok a dupla zsinór másik oldalára kerüljön. Ezt úgy is elérhetjük, ha a téglatest formájú ,,alapot'' bújtatjuk át a hurkon.