Szerk
P. 5646. Űrutazást terveznek a Marsra. Az űrhajó a Földet elhagyva olyan ellipszis pályára áll, amely érinti a két bolygópályát, perihéliumába esik a felszállás, aphéliumába pedig a megérkezés. A visszaút hasonló ellipszispályán történik. Az induláshoz mindkét esetben ki kell várni, amíg a két bolygó megfelelő helyzetbe kerül. Mennyi ideig tart az oda-, illetve visszaút, és legalább mennyi időt fognak a Marson tölteni? A bolygópályákat tekintsük azonos síkban fekvő köröknek, a Mars keringési ideje \(\displaystyle 687{,}0\) földi nap.
(5 pont)
Közli: Vladár Károly, Kiskunhalas
Megoldás. A Mars keringési ideje \(\displaystyle T_{\mathrm{M}}=687{,}0~\textrm{nap}=1{,}881~\textrm{év}\). Kepler III. törvénye alapján a Mars-pálya sugara:
\(\displaystyle \frac{R_{\mathrm{M}}^3}{T_{\mathrm{M}}^2}=\frac{R_{\mathrm{F}}^3}{T_{\mathrm{F}}^2},\quad\Rightarrow\quad R_{\mathrm{M}}=\sqrt[3]{\left(\frac{T_{\mathrm{M}}}{T_{\mathrm{F}}}\right)^2}R_{\mathrm{F}}=1{,}524~\mathrm{CsE}, \)
ahol \(\displaystyle R_\mathrm{F}=1\,\mathrm{CsE}\) a Föld-pálya sugara és \(\displaystyle T_\mathrm{F}=1\,\textrm{év}\) a Föld keringési ideje.
1. ábra
Az oda- és visszaút ellipszispályájának félnagytengelye:
\(\displaystyle a=\frac{R_{\mathrm{M}}+R_{\mathrm{F}}}{2}=1{,}262~\mathrm{CsE},\)
amelyen a keringési idő (ismét Kepler III. törvénye alapján):
\(\displaystyle \frac{a^3}{T^2}=\frac{R_{\mathrm{F}}^3}{T_{\mathrm{F}}^2},\quad\Rightarrow\quad T=\sqrt{\left(\frac{a}{R_{\mathrm{F}}}\right)^3}T_{\mathrm{F}}=1{,}418~\textrm{év}. \)
Az oda- és visszaút időtartama egyaránt ennek az időnek a fele:
\(\displaystyle t=\frac{T}{2}=0{,}709~\textrm{év}\approx 259~\mathrm{nap}. \)
Az űrhajót akkor lehet visszaindítani, ha a \(\displaystyle t\) ideig tartó visszaút után éppen a Földdel egyszerre ér az ellipszis napközeli pontjába. A 2. ábrán az odaút indulásának és megérkezésének, valamint a visszaút indulásának pillanata látható.
2. ábra
Az odautazás indulásakor a Mars még \(\displaystyle \alpha=\tfrac{360^\circ}{T_{\mathrm{M}}}\,t=135{,}7^\circ\)-kal a találkozási pont előtt jár. Mire az űrhajó pontosan fél fordulat után eléri a Marsot, a Föld \(\displaystyle \beta=\tfrac{360^\circ}{T_{\mathrm{F}}}\,t=255{,}2^\circ\)-ot tesz meg a pályáján, így a Föld ekkor \(\displaystyle \beta-180^\circ=75{,}2^\circ\)-kal jár a Mars előtt. Emiatt a visszainduláskor a Marsnak kell ugyanekkora szöggel a Föld előtt járnia. Tehát a Földnek az űrhajó megérkezése és visszaindulása között a Marshoz viszonyítva
\(\displaystyle \gamma=360^\circ-2(\beta-180^\circ)=209{,}6^\circ \)
szöget kell elfordulnia a Nap körül. A két bolygó relatív szögsebessége
\(\displaystyle \omega_{\mathrm{rel}}=\frac{360^\circ}{T_{\mathrm{F}}}-\frac{360^\circ}{T_{\mathrm{M}}}=\frac{168{,}6^\circ}{\textrm{év}}, \)
így a legrövidebb várakozási idő:
\(\displaystyle t_1=\frac{\gamma}{\omega_{\mathrm{rel}}}=1{,}243~\textrm{év}\approx 454~\textrm{nap}. \)
Elekes Panni (Budapest-Fasori Evangélikus Gimn., 10. évf.)
Megjegyzések. 1. A megadott ellipszispályát Hohmann-pályának nevezik Walter Hohmann német mérnök után, aki 1925-ben javasolta, mint rakétaüzemanyag-felhasználás szempontjából leggazdaságosabb bolygóközi pályát.
2. A Mars és a Föld
\(\displaystyle T_{\mathrm{rel}}=\frac{360^\circ}{\omega_{\mathrm{rel}}}=2{,}135~\textrm{év}\approx 780~\mathrm{nap} \)
időközönként kerül ugyanilyen relatív helyzetbe, így az első lehetséges alkalom után ennyi időnként adódik újabb lehetőség a visszaindulásra.
3. A Föld és a Mars pályájának numerikus excentricitása: 0,0167, illetve 0,0934. A Mars-pálya inklinációja (a pálya síkjának a Föld pályájáéval, vagyis az ekliptikával bezárt szöge): \(\displaystyle 1{,}85^\circ\). Ezeket a végső, pontosabb tervezéskor figyelembe kell venni.
22 dolgozat érkezett. Helyes 8 megoldás. Kicsit hiányos (4 pont) 4, hiányos (2–3 pont) 10 dolgozat.
P. 5640. A Kanári-szigetek legnagyobb városában, Las Palmasban található egy Európában egyedülálló kiállítás, amely a Föld vizeinek élővilágát mutatja be. A kiállítás egyik attrakciója egy \(\displaystyle 400\) köbméteres, függőleges, henger alakú tengeri akvárium, melynek karbantartását búvárok végzik. Vízszintesen körbenézve az akvárium falának hányad részén lát ki az a búvár, aki az \(\displaystyle R\) sugarú henger szimmetriatengelyétől \(\displaystyle d\) távolságra van? A tengervíz törésmutatója \(\displaystyle n\).
1. Két pozitív szám számtani közepe \(\displaystyle 205\), a számtani és mértani közepük különbsége \(\displaystyle 160\). Melyik ez a két szám?
2. Számítsa ki \(\displaystyle x \in \mathbb{R}\) értékét, ha \(\displaystyle \overrightarrow{AB} \cdot \overrightarrow{AC}=0\), valamint \(\displaystyle A(x;7)\), \(\displaystyle B(4;-1)\) és \(\displaystyle C(x-11; -4)\).
Azok is figyelmesen olvassák el a Versenykiírást, akik tavaly már részt vettek versenyünkben.
Idén is matematikából, fizikából és informatikából indítunk versenyeket. Egyénileg, illetve csapatban is lehet versenyezni, a versenyek 9 hónapon keresztül, 2025. szeptemberétől 2026. június elejéig tartanak. Minden hónapban új feladatokat tűzünk ki, és a megoldásokat a következő hónap elejéig küldheted be. A verseny végeredményét a 2026. szeptemberi számunkban hirdetjük ki. A díjakat jövő ősszel, a KöMaL Ifjúsági Ankéton adjuk át.
Oldja meg a valós számok halmazán a következő egyenletet!
\(\displaystyle \sqrt{x^2-5x-14}\cdot\lvert5-x\rvert\cdot\sin\left(2x+\dfrac{\pi}{6}\right)\cdot\lg(9-x)=0 \)
Megoldás. Az értelmezési tartomány a logaritmikus kifejezés miatt \(\displaystyle 9-x>0\), így \(\displaystyle x<9\), továbbá a négyzetgyökös kifejezés miatt \(\displaystyle x^2-5x-14\ge 0\), amiből \(\displaystyle x\leq -2\) vagy \(\displaystyle x\geq 7\) ...
1. a) Oldja meg a következő egyenletet az egész számok halmazán:
\(\displaystyle (x^2-9)\left(\dfrac{1}{x-3}-\dfrac{1}{x+3}-1\right)=9+x \)
b) Egy négyszög \(\displaystyle \alpha\) szögére teljesül, hogy \(\displaystyle 4\sin^2\alpha-3=0\). Mekkora lehet az \(\displaystyle \alpha\) szög nagysága?
Ha egy négyzetet a két átlójával felosztunk négy háromszögre, majd ezeket kiszínezzük három színnel az összes lehetséges módon, akkor megkapjuk a négyzetes színdominókat.
A színdominókat először a múlt század elején írta le Percy Alexander MacMahon, a kalandos életű matematikus. Ő rögtön megadott több nehéz feladatot is hozzájuk.
A Rátz László vándorgyűlésen rendezett verseny feladatai
1. Az Azariah koncertre jegyet vásárlók sorában Dávid elölről a 2024., hátulról a 2025. várakozó. Hány ember áll a sorban?
(A) 4047; (B) 4048; (C) 4049; (D) 4050; (E) 4051
2. Dia és Viki egy táblán meglát néhány számot. Dia minden számhoz hozzáad 3-at, majd megállapítja, hogy a kapott számok összege 45. Viki az eredetileg a táblán szereplő számokat megszorozza 3-mal, és meglepődve állapítja meg, hogy az általa kapott számok összege is 45. Hány szám volt felírva a táblára a lányok érkezésekor?
(A) 10; (B) 9; (C) 8; (D) 6; (E) 5
A magyar matematika egyik fellegvára – az egyetemek mellett – a Rényi Alfréd Matematikai Kutatóintézet. Az intézetet 1950-ben alapították a Magyar Tudományos Akadémia Alkalmazott Matematikai Intézete néven. A kommunista ideológia szerint ,,a tudomány közvetlen termelőerővé válik'', ennek megfelelően az intézet feladata a népgazdaság fejlődésének segítése volt a tudomány eszközeivel. Az intézet vezetésével az akkor mindössze 29 éves sztármatematikust, Rényi Alfrédot bízták meg. Rényi bölcsen hagyta, hogy a kötelező feladatok elvégzése mellett az intézetbe toborzott kiváló matematikusok elméleti kérdésekkel is foglalkozzanak, hiszen az alkalmazott és az elméleti matematika összetartozik, együtt művelve a két irányt sokkal eredményesebb lesz a munka. Ezt az Akadémia vezetésével is sikerült elfogadtatnia, ennek megfelelően már 1955-ben a Matematikai Kutató Intézet elnevezés került a cégtáblára. Rényi Alfréd sajnos korán, 49 évesen elhunyt. Az intézet 1999 óta viseli alapító igazgatójának a nevét.
A KöMaL 2025 szeptemberi számában (Tait tétele és a 3-reguláris gráfok – a B. 5403. feladat háttere) kimondtuk Tait alábbi tételét.
Tétel (Tait tétele). Legyen \(\displaystyle G\) egy 3-reguláris, hídélmentes, síkbarajzolt gráf. Ekkor \(\displaystyle G\) tartományai \(\displaystyle 4\)-színezhetők akkor és csak akkor, ha élei \(\displaystyle 3\)-színezhetők.
A tételben \(\displaystyle k\)-színezésen olyan színezést értünk, amely \(\displaystyle k\)-féle színt használ, és az egymással szomszédos tartományok (illetve élszínezés esetén az egy csúcsban találkozó élek) mindig különböző színűek.
A szeptemberi számba nem került be a tétel bizonyítása (azzal a céllal, hogy akinek van kedve, gondolkodhasson rajta), ezt most pótoljuk.
Legutóbb szeptemberi számunkban foglalkoztunk bújócska típusú ördöglakatokkal. Elkészítésre ajánlottunk olvasóinknak egy pálcás változatot, ahol a ,,szokásos'' trükk nem működik, mivel az átbújtatás után (lásd ábra) a pálca nem fér át a hurkon a zsinór rövidsége miatt. Azonban vegyük észre, hogy ebben az átbújtatott állapotban valójában annyi a célunk, hogy a hurok a dupla zsinór másik oldalára kerüljön. Ezt úgy is elérhetjük, ha a téglatest formájú ,,alapot'' bújtatjuk át a hurkon.