Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?

A P. 5646. fizika feladat megoldása

Szerk

P. 5646. Űrutazást terveznek a Marsra. Az űrhajó a Földet elhagyva olyan ellipszis pályára áll, amely érinti a két bolygópályát, perihéliumába esik a felszállás, aphéliumába pedig a megérkezés. A visszaút hasonló ellipszispályán történik. Az induláshoz mindkét esetben ki kell várni, amíg a két bolygó megfelelő helyzetbe kerül. Mennyi ideig tart az oda-, illetve visszaút, és legalább mennyi időt fognak a Marson tölteni? A bolygópályákat tekintsük azonos síkban fekvő köröknek, a Mars keringési ideje \(\displaystyle 687{,}0\) földi nap.

(5 pont)

Közli: Vladár Károly, Kiskunhalas

Megoldás. A Mars keringési ideje \(\displaystyle T_{\mathrm{M}}=687{,}0~\textrm{nap}=1{,}881~\textrm{év}\). Kepler III. törvénye alapján a Mars-pálya sugara:

\(\displaystyle \frac{R_{\mathrm{M}}^3}{T_{\mathrm{M}}^2}=\frac{R_{\mathrm{F}}^3}{T_{\mathrm{F}}^2},\quad\Rightarrow\quad R_{\mathrm{M}}=\sqrt[3]{\left(\frac{T_{\mathrm{M}}}{T_{\mathrm{F}}}\right)^2}R_{\mathrm{F}}=1{,}524~\mathrm{CsE}, \)

ahol \(\displaystyle R_\mathrm{F}=1\,\mathrm{CsE}\) a Föld-pálya sugara és \(\displaystyle T_\mathrm{F}=1\,\textrm{év}\) a Föld keringési ideje.


1. ábra

Az oda- és visszaút ellipszispályájának félnagytengelye:

\(\displaystyle a=\frac{R_{\mathrm{M}}+R_{\mathrm{F}}}{2}=1{,}262~\mathrm{CsE},\)

amelyen a keringési idő (ismét Kepler III. törvénye alapján):

\(\displaystyle \frac{a^3}{T^2}=\frac{R_{\mathrm{F}}^3}{T_{\mathrm{F}}^2},\quad\Rightarrow\quad T=\sqrt{\left(\frac{a}{R_{\mathrm{F}}}\right)^3}T_{\mathrm{F}}=1{,}418~\textrm{év}. \)

Az oda- és visszaút időtartama egyaránt ennek az időnek a fele:

\(\displaystyle t=\frac{T}{2}=0{,}709~\textrm{év}\approx 259~\mathrm{nap}. \)

Az űrhajót akkor lehet visszaindítani, ha a \(\displaystyle t\) ideig tartó visszaút után éppen a Földdel egyszerre ér az ellipszis napközeli pontjába. A 2. ábrán az odaút indulásának és megérkezésének, valamint a visszaút indulásának pillanata látható.


2. ábra

Az odautazás indulásakor a Mars még \(\displaystyle \alpha=\tfrac{360^\circ}{T_{\mathrm{M}}}\,t=135{,}7^\circ\)-kal a találkozási pont előtt jár. Mire az űrhajó pontosan fél fordulat után eléri a Marsot, a Föld \(\displaystyle \beta=\tfrac{360^\circ}{T_{\mathrm{F}}}\,t=255{,}2^\circ\)-ot tesz meg a pályáján, így a Föld ekkor \(\displaystyle \beta-180^\circ=75{,}2^\circ\)-kal jár a Mars előtt. Emiatt a visszainduláskor a Marsnak kell ugyanekkora szöggel a Föld előtt járnia. Tehát a Földnek az űrhajó megérkezése és visszaindulása között a Marshoz viszonyítva

\(\displaystyle \gamma=360^\circ-2(\beta-180^\circ)=209{,}6^\circ \)

szöget kell elfordulnia a Nap körül. A két bolygó relatív szögsebessége

\(\displaystyle \omega_{\mathrm{rel}}=\frac{360^\circ}{T_{\mathrm{F}}}-\frac{360^\circ}{T_{\mathrm{M}}}=\frac{168{,}6^\circ}{\textrm{év}}, \)

így a legrövidebb várakozási idő:

\(\displaystyle t_1=\frac{\gamma}{\omega_{\mathrm{rel}}}=1{,}243~\textrm{év}\approx 454~\textrm{nap}. \)

Elekes Panni (Budapest-Fasori Evangélikus Gimn., 10. évf.)

Megjegyzések. 1. A megadott ellipszispályát Hohmann-pályának nevezik Walter Hohmann német mérnök után, aki 1925-ben javasolta, mint rakétaüzemanyag-felhasználás szempontjából leggazdaságosabb bolygóközi pályát.

2. A Mars és a Föld

\(\displaystyle T_{\mathrm{rel}}=\frac{360^\circ}{\omega_{\mathrm{rel}}}=2{,}135~\textrm{év}\approx 780~\mathrm{nap} \)

időközönként kerül ugyanilyen relatív helyzetbe, így az első lehetséges alkalom után ennyi időnként adódik újabb lehetőség a visszaindulásra.

3. A Föld és a Mars pályájának numerikus excentricitása: 0,0167, illetve 0,0934. A Mars-pálya inklinációja (a pálya síkjának a Föld pályájáéval, vagyis az ekliptikával bezárt szöge): \(\displaystyle 1{,}85^\circ\). Ezeket a végső, pontosabb tervezéskor figyelembe kell venni.

22 dolgozat érkezett. Helyes 8 megoldás. Kicsit hiányos (4 pont) 4, hiányos (2–3 pont) 10 dolgozat.