Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?
Fizika — Mintamegoldás

A P. 5669. fizika feladat megoldása

Szerk

P. 5669. Egy \(\displaystyle R=5~\mathrm{cm}\) sugarú, \(\displaystyle m=0{,}5~\mathrm{kg}\) tömegű, homogén anyageloszlású tárcsa \(\displaystyle r=0{,}5~\mathrm{cm}\) sugarú tengelyéhez egy \(\displaystyle L=20~\mathrm{cm}\) hosszúságú, vékony fonál egyik végét rögzítjük, és a fonál \(\displaystyle L/2\) hosszúságú részét a tengelyre feltekerjük. A függőleges fonál másik végét rögzített helyzetben tartva a tárcsát elengedjük.

a) Mekkora erő feszíti a fonalat az egyenletesen gyorsuló tárcsa (,,jojó'') mozgása közben?

b) Mekkora a tárcsa tengelyének sebessége a fonál kitekeredésének pillanatában?

c) A tárcsa függőleges mozgásának megfordulásakor a fonalat feszítő erő egy rövid időre megnő (a tárcsa ,,ránt egyet'' a fonálon). Becsüljük meg a fonálerő átlagos értékét a rántás alatt!

A tengely tömegét, a fonál függőlegestől való eltérését és a közegellenállást elhanyagolhatjuk. A tárcsa szögsebességét az ,,átfordulás'' alatt tekintsük állandónak.

(6 pont)

Közli: Gnädig Péter, Vácduka

Megoldás. a) A tárcsára két erő hat: a nehézségi erő és a fonálerő (ábra). A tömegközéppont gyorsulása \(\displaystyle a_{\mathrm{tkp}}\), a tárcsa szöggyorsulása \(\displaystyle \beta\). A mozgásegyenletek:

$$\begin{gather*} ma_{\mathrm{tkp}}=mg-K,\\ \Theta\beta=Kr, \end{gather*}$$

ahol \(\displaystyle \Theta=\tfrac{1}{2}mR^2\) a tárcsa tehetetlenségi nyomatéka. A kényszerfeltétel miatt (a fonál nem csúszik meg a tengelyen):

\(\displaystyle a_{\mathrm{tkp}}=r\beta. \)

Az egyenletrendszer megoldása:

$$\begin{gather*} K=\frac{mg}{1+\frac{2r^2}{R^2}}=4{,}81~\mathrm{N},\\ a_{\mathrm{tkp}}=\frac{g}{1+\frac{R^2}{2r^2}}=0{,}192~\mathrm{m}/\mathrm{s}^2. \end{gather*}$$

Tehát a fonálerő a letekeredés alatt: \(\displaystyle K=4{,}81~\mathrm{N}\).

b) A tengely \(\displaystyle a_{\mathrm{tkp}}\) gyorsulással tesz meg \(\displaystyle L/2\) távolságot, így a végsebessége:

\(\displaystyle v=\sqrt{La_{\mathrm{tkp}}}=\sqrt{\frac{Lg}{1+\frac{R^2}{2r^2}}}=0{,}196~\mathrm{m}/\mathrm{s}. \)

Megjegyzés. A végsebesség (a gyorsulás ismerete nélkül) az energiamegmaradásból is meghatározható:

\(\displaystyle \frac{1}{2}mv^2+\frac{1}{2}\Theta\omega^2=mg\frac{L}{2}, \)

amiből a \(\displaystyle v=r\omega\) kényszerfeltétel és \(\displaystyle \Theta=\tfrac{1}{2}mR^2\) felhasználásával:

$$\begin{gather*} v^2\left(1+\frac{R^2}{2r^2}\right)=Lg,\\ v=\sqrt{\frac{Lg}{1+\frac{R^2}{2r^2}}}, \end{gather*}$$

az előző megoldással megegyezően.

c) A rántás alatt a tömegközéppont sebessége irányt vált, így a rendszer impulzusa

\(\displaystyle \Delta I=2mv \)

értékkel megváltozik. Eközben a tengely közel állandó szögsebességgel átfordul, a \(\displaystyle \pi\) szögelforduláshoz

\(\displaystyle \Delta t=\frac{\pi}{\omega}=\frac{r\pi}{v} \)

időre van szükség. (Itt ismét felhasználtuk a \(\displaystyle v=r\omega\) kényszerfeltételt.) A rántás alatt a testre ható átlagos erő:

\(\displaystyle K_{\mathrm{r}}-mg=\frac{\Delta I}{\Delta t}, \)

amiből a keresett (átlagos) fonálerő a rántás közben:

\(\displaystyle K_{\mathrm{r}}=\frac{\Delta I}{\Delta t}+mg=\frac{2mv^2}{r\pi}+mg=\left(\frac{4Lr}{\pi(2r^2+R^2)}+1\right)mg=7{,}35~\mathrm{N}. \)

Papp Emese Petra (Budapest, ELTE Apáczai Csere J. Gyak. Gimn., 11. évf.)

36 dolgozat érkezett. Helyes 11 megoldás. Kicsit hiányos (4–5 pont) 17, hiányos(1–3 pont) 7, nem versenyszerű 1 dolgozat.

Fizika — Mintamegoldás

A P. 5640. fizika feladat megoldása

P. 5640. A Kanári-szigetek legnagyobb városában, Las Palmasban található egy Európában egyedülálló kiállítás, amely a Föld vizeinek élővilágát mutatja be. A kiállítás egyik attrakciója egy \(\displaystyle 400\) köbméteres, függőleges, henger alakú tengeri akvárium, melynek karbantartását búvárok végzik. Vízszintesen körbenézve az akvárium falának hányad részén lát ki az a búvár, aki az \(\displaystyle R\) sugarú henger szimmetriatengelyétől \(\displaystyle d\) távolságra van? A tengervíz törésmutatója \(\displaystyle n\).

Matematika — Érettségi gyakorló

Gyakorló feladatsor emelt szintű matematika érettségire (2025/8)

1. Két pozitív szám számtani közepe \(\displaystyle 205\), a számtani és mértani közepük különbsége \(\displaystyle 160\). Melyik ez a két szám?

2. Számítsa ki \(\displaystyle x \in \mathbb{R}\) értékét, ha \(\displaystyle \overrightarrow{AB} \cdot \overrightarrow{AC}=0\), valamint \(\displaystyle A(x;7)\), \(\displaystyle B(4;-1)\) és \(\displaystyle C(x-11; -4)\).

Pontverseny — Versenykiírás

Versenykiírás a KöMaL 2025–2026. évi pontversenyeire

Azok is figyelmesen olvassák el a Versenykiírást, akik tavaly már részt vettek versenyünkben.

Idén is matematikából, fizikából és informatikából indítunk versenyeket. Egyénileg, illetve csapatban is lehet versenyezni, a versenyek 9 hónapon keresztül, 2025. szeptemberétől 2026. június elejéig tartanak. Minden hónapban új feladatokat tűzünk ki, és a megoldásokat a következő hónap elejéig küldheted be. A verseny végeredményét a 2026. szeptemberi számunkban hirdetjük ki. A díjakat jövő ősszel, a KöMaL Ifjúsági Ankéton adjuk át.

Matematika — Érettségi gyakorló

Megoldásvázlatok a 2025/9. szám matematika gyakorló feladatsorához

Oldja meg a valós számok halmazán a következő egyenletet!

\(\displaystyle \sqrt{x^2-5x-14}\cdot\lvert5-x\rvert\cdot\sin\left(2x+\dfrac{\pi}{6}\right)\cdot\lg(9-x)=0 \)

Megoldás. Az értelmezési tartomány a logaritmikus kifejezés miatt \(\displaystyle 9-x>0\), így \(\displaystyle x<9\), továbbá a négyzetgyökös kifejezés miatt \(\displaystyle x^2-5x-14\ge 0\), amiből \(\displaystyle x\leq -2\) vagy \(\displaystyle x\geq 7\) ...

Matematika — Érettségi gyakorló

Gyakorló feladatsor emelt szintű matematika érettségire (2026/1)

1. a) Oldja meg a következő egyenletet az egész számok halmazán:

\(\displaystyle (x^2-9)\left(\dfrac{1}{x-3}-\dfrac{1}{x+3}-1\right)=9+x \)

b) Egy négyszög \(\displaystyle \alpha\) szögére teljesül, hogy \(\displaystyle 4\sin^2\alpha-3=0\). Mekkora lehet az \(\displaystyle \alpha\) szög nagysága?

Matematika — Rejtvények, ördöglakatok

Rejtvények, ördöglakatok: Színdominóktól a Wang csempékig

Ha egy négyzetet a két átlójával felosztunk négy háromszögre, majd ezeket kiszínezzük három színnel az összes lehetséges módon, akkor megkapjuk a négyzetes színdominókat.

A színdominókat először a múlt század elején írta le Percy Alexander MacMahon, a kalandos életű matematikus. Ő rögtön megadott több nehéz feladatot is hozzájuk.

Matematika — Rátz László vándorgyűlés

Tanárverseny középiskolában tanító tanároknak

A Rátz László vándorgyűlésen rendezett verseny feladatai

1. Az Azariah koncertre jegyet vásárlók sorában Dávid elölről a 2024., hátulról a 2025. várakozó. Hány ember áll a sorban?

(A) 4047;  (B) 4048;  (C) 4049;  (D) 4050;  (E) 4051

2. Dia és Viki egy táblán meglát néhány számot. Dia minden számhoz hozzáad 3-at, majd megállapítja, hogy a kapott számok összege 45. Viki az eredetileg a táblán szereplő számokat megszorozza 3-mal, és meglepődve állapítja meg, hogy az általa kapott számok összege is 45. Hány szám volt felírva a táblára a lányok érkezésekor?

(A) 10;  (B) 9;  (C) 8;  (D) 6;  (E) 5

Matematika — Közélet

75 éves a Matematikai Kutatóintézet

A magyar matematika egyik fellegvára – az egyetemek mellett – a Rényi Alfréd Matematikai Kutatóintézet. Az intézetet 1950-ben alapították a Magyar Tudományos Akadémia Alkalmazott Matematikai Intézete néven. A kommunista ideológia szerint ,,a tudomány közvetlen termelőerővé válik'', ennek megfelelően az intézet feladata a népgazdaság fejlődésének segítése volt a tudomány eszközeivel. Az intézet vezetésével az akkor mindössze 29 éves sztármatematikust, Rényi Alfrédot bízták meg. Rényi bölcsen hagyta, hogy a kötelező feladatok elvégzése mellett az intézetbe toborzott kiváló matematikusok elméleti kérdésekkel is foglalkozzanak, hiszen az alkalmazott és az elméleti matematika összetartozik, együtt művelve a két irányt sokkal eredményesebb lesz a munka. Ezt az Akadémia vezetésével is sikerült elfogadtatnia, ennek megfelelően már 1955-ben a Matematikai Kutató Intézet elnevezés került a cégtáblára. Rényi Alfréd sajnos korán, 49 évesen elhunyt. Az intézet 1999 óta viseli alapító igazgatójának a nevét.

Matematika — Cikk

Tait tételének bizonyítása

A KöMaL 2025 szeptemberi számában (Tait tétele és a 3-reguláris gráfok – a B. 5403. feladat háttere) kimondtuk Tait alábbi tételét.

Tétel (Tait tétele). Legyen \(\displaystyle G\) egy 3-reguláris, hídélmentes, síkbarajzolt gráf. Ekkor \(\displaystyle G\) tartományai \(\displaystyle 4\)-színezhetők akkor és csak akkor, ha élei \(\displaystyle 3\)-színezhetők.

A tételben \(\displaystyle k\)-színezésen olyan színezést értünk, amely \(\displaystyle k\)-féle színt használ, és az egymással szomszédos tartományok (illetve élszínezés esetén az egy csúcsban találkozó élek) mindig különböző színűek.

A szeptemberi számba nem került be a tétel bizonyítása (azzal a céllal, hogy akinek van kedve, gondolkodhasson rajta), ezt most pótoljuk.

Matematika — Rejtvények, ördöglakatok

Rejtvények, ördöglakatok: Emelt szintű bújócska II.

Legutóbb szeptemberi számunkban foglalkoztunk bújócska típusú ördöglakatokkal. Elkészítésre ajánlottunk olvasóinknak egy pálcás változatot, ahol a ,,szokásos'' trükk nem működik, mivel az átbújtatás után (lásd ábra) a pálca nem fér át a hurkon a zsinór rövidsége miatt. Azonban vegyük észre, hogy ebben az átbújtatott állapotban valójában annyi a célunk, hogy a hurok a dupla zsinór másik oldalára kerüljön. Ezt úgy is elérhetjük, ha a téglatest formájú ,,alapot'' bújtatjuk át a hurkon.