Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?

Fórum: Fizikások válaszoljanak

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]  

Szeretnél hozzászólni? Jelentkezz be.
[1161] lorantfy2013-03-11 13:43:48

A függőleges súlyerő (G=8 N), a vízszintes gyorsítóerő (F=ma=1,76 N) és a kötélerő vektorháromszögéből számítsd ki a szöget: tg(alfa)=F/G !

Előzmény: [1160] huu, 2013-03-11 05:54:09
[1160] huu2013-03-11 05:54:09

Üdv!

lenne egy feladatom. Kérlek segítsetek a megoldásában. Előre is köszönöm.

Egy vasúti kocsi belsejében, a tetőre függesztenek egy 0.8 kg tömegű testet egy nyújthatatlan és elhanyagolható tömegű kötélre. A vasúti kocsi állandó 2.2 m/s2 gyorsulással gyorsít. Mekkora szöget (fokban) zár be a kötél a függőlegessel?

[1157] Gézoo2012-12-18 13:09:56

Szívesen!

Előzmény: [1156] Sára88, 2012-12-14 13:35:23
[1156] Sára882012-12-14 13:35:23

Köszönöm szépen a segítséged! A hibaterjedési törvény képletének az alkalmazásával kell a hibát becsülni, ez a feladat lényege. de remélem el tudom kezdeni a segítségeddel! Köszi a válaszod még egyszer!

Előzmény: [1155] Gézoo, 2012-12-14 13:05:48
[1155] Gézoo2012-12-14 13:05:48

I=4,5/3000=1,5 mA

A digi műszerek 4 jegy +- 1 digit Ez a feszültség méréskor +-10 mV hibát okoz, a 19,99V-os méréshatárnál, áram méréskor 1,999 mA méréshatárnál +-1uA hibát

Az analóg tükrös-nagyítós műszerek leolvashatósága +-0,5

neked +-3 Ohm pontosság kell, akkor a hiba nem lehet nagyobb mint +-0,1

Az eredményt hányados adja azaz a legnagyobb hiba nagysága határozza meg a mérés hibáját.

a 4500 mV-nak a 10 mV 1/450-ed része   0,2

Így, vagy etalonnal kalibrált híd kapcsolást kellene használni, vagy ami ezzel egyenértékű, etalonnal felépített kalibrált feszültség generátort és az 1,999 mA -es méréshatárt használva áramot mérni.

Persze lehet, hogy a feladatnak más a célja. Akkor teljesen más is lehet a megoldás.

Előzmény: [1154] Sára88, 2012-12-14 12:26:13
[1154] Sára882012-12-14 12:26:13

Sziasztok! Valaki tudna nekem segíteni ebben a feladatban???

Egy termisztor ellenállását Ohm törvénye alapján, a rá eső feszültség (Ux) és a rajta folyó áram (Ix) mérésével akarjuk meghatározni: Rx=Ux/Ix A termisztorra kapcsolt feszültség kb. 4,5 V, a termisztor ellenállása a kérdéses tartományban kb. 3 kOhm. A méréshez egy digitális multimétert (méréshatárok feszültségmérésre 0.1999 V, 1.999 V és 19.99 V, árammérésre 1.999 mA, 19.99 mA, 199.9 mA és 1.999 A, a pontosság minden esetben ±1 digit) és egy analóg multimétert (méréshatárok feszültségmérésre 0.6 V, 1.2 V, 3 V, 12 V és 30 V, árammérésre 1.2 mA, 3 mA, 12 mA, 30 mA és 120 mA, a pontosság minden esetben a méréshatár ± 0.5 Milyen összeállításban érjük el a nagyobb pontosságot Rx meghatározásában, mekkora így Rx hibája? + Ha feszültségmérésre a fenti digitális multimétert használjuk, milyen pontosságú árammérővel lehetne elérni a ±3 Ohmos pontosságot?

[1153] lorantfy2012-12-03 16:24:27

Tartok tőle, hogy Robinak ez túl nagy ugrás. Első lépésként talán kilogikázhatnád Robi, hogy ha 10 N 20 cm-es megnyúlást okoz egy gumin, akkor 5 cm-es megnyújtáshoz mekkora erő kell két gumi esetén. Azután már kiszámolhatod, mekkora munkát végzünk a gumik megnyújtásakor. Ez pedig választ ad Mihály előző kérdésére. Abból pedig már megkapod a sebességet.

Előzmény: [1152] Fálesz Mihály, 2012-12-03 11:36:57
[1152] Fálesz Mihály2012-12-03 11:36:57

Mekkora mozgási energiát adsz a kavicsnak?

Előzmény: [1151] Robi01, 2012-12-02 21:58:25
[1151] Robi012012-12-02 21:58:25

Kérlek segítsen valaki! Lenne itt 1 feladat ami egy kicsit kifogott rajtam és ha valaki tudja a megoldást annak nagyon hálás lennék! :)

Tehát: Csúzlit készítünk két olyan hosszú gumiszalagból, amelyeket 10N erő külön-külön 20cm-rel nyújt meg. A csúzlit 5cm-rel kihúzva mekkora kezdősebességet adhatunk az 50g tömegű kavicsnak? ( A veszteségtől eltekintünk. )

előre is köszönöm a segítséget ;-)

[1150] Syac2012-11-03 20:39:41

Kedves Hozzászólók!

Köszönöm a véleményeket és a megoldásokat!

Üdv.!

[1149] SmallPotato2012-11-02 10:52:56

Elegáns.

Előzmény: [1148] Geg, 2012-11-02 06:42:25
[1148] Geg2012-11-02 06:42:25

Talan egy kicsit egyszerubb megoldas (bar izles dolga) nem pillanatnyi forgastengellyel szamolni, hanem kihasznalni, hogy a mozgas leirhato a tomegkozeppont halado es akoruli forgassal is.

A lenyeg az, hogy (hasznalva az elozo abra jeloleseit) ha mind a C, mind a B pontok sebessegebol kivonjuk a csak a forgasbol szarmazo sebessegjarulekot, akkor ugyanazt, nevezetesen a tkp. sebesseget kell, hogy megkapjuk.

A C es B pontok sebessege:

\vec{v}_C=v_0\left(\matrix{\cos \alpha \cr \sin \alpha}\right), \qquad \vec{v}_B=\left(\matrix{v_1 \cr 0}\right).

A csak a forgasbol szarmazo jarulekok a C es B pontokban:

 \vec{w}_C=\omega l/2 \left(\matrix{-\sin\beta \cr \cos \beta}\right), \qquad \vec{w}_B=\omega l/2 \left(\matrix{\sin \beta \cr -\cos \beta}\right),

ahol \omega a szogsebesseg. A tkp. sebessege ketfelekepp kifejezve:

\vec{v}_{tkp}=\vec{v}_C-\vec{w}_C=\vec{v}_B-\vec{w}_B,

amely egyenlet x es y komponensebol kapjuk rendre, hogy:

v1=v0cos \alpha+\omegalsin \beta,

v0sin \alpha=\omegalcos \beta.

A masodik egyenletbol kifejezve \omega -t, majd beirva az elsobe kapjuk, hogy:

v1=v0cos \alpha+v0sin \alphatg \beta.

Kihasznalva, hogy \delta\beta/\deltat=\omega, a B pont gyorsulasara kapjuk, hogy:

 a_1=\frac{\delta v_1}{\delta t}=\frac{v_0\sin\alpha}{\cos^2\beta}\omega=\frac{v_0^2}{l}\frac{\sin^2\alpha}{\cos^3\beta},

vagyis a keresett ero:

 F = m a_1/cos\beta = \frac{mv_0^2}{l}\frac{\sin^2\alpha}{\cos^4\beta}.

[1147] HoA2012-11-01 09:01:13

Megvan a hiányzó cos(\beta) ! Ugyanis a kötélerő és a szánkó gyorsulásának iránya nem azonos. A szánkó gyorsuéását a kötélerő vízszintes összetevője okozza. A gyorsulás ( a ) valóban a fenti. Viszont a kötélerőre

K.cos(\beta)=m.a

K = \frac {m \cdot a}{cos(\beta)} = \frac {m \cdot {v_0}^2}{l} \frac {sin^2(\alpha)}{cos^4(\beta)}

Előzmény: [1146] HoA, 2012-10-31 21:29:39
[1146] HoA2012-10-31 21:29:39

Az általános esetben ( 0<\alpha<90o,0<\beta<\alpha ) az ábra szerinti jelölésekkel az OBC háromszögben r0cos(\alpha-\beta)=r1cos(\beta) ( merőleges szárú szögek alapján ) ,

 v_1 / v_0 = r_1 / r_0 =  cos ( \alpha - \beta ) / cos (\beta ) , v_1 = \frac { v_0 \cdot cos ( \alpha - \beta ) }{ cos (\beta ) } = v_0  \frac {cos (\alpha) cos (\beta )+ sin (\alpha) sin (\beta )}{ cos (\beta ) } =

=v0(cos(\alpha)+sin(\alpha)tg(\beta))

 \frac {\delta v_1}{\delta \beta} = \frac {v_0 \cdot sin (\alpha)}{cos^2 (\beta)} . Az ABC háromszögben AC a kötél végének megtett útja , v0.t, a sinus tételből sin (\beta) = \frac {v_0 \cdot t \cdot sin(\alpha)}{l} . Az időben változó sin(\beta) –t f-fel jelölve  \frac {\delta f}{\delta \beta} = cos(\beta) , és így  \frac {\delta \beta}{\delta f} = \frac {1}{cos(\beta) } . A szánkó gyorsulása:

a = \frac {\delta v_1}{\delta t} = \frac {\delta v_1}{\delta \beta }  \frac {\delta \beta}{\delta f }  \frac {\delta f}{\delta t } =  \frac {v_0 \cdot sin (\alpha)}{cos^2 (\beta)} \cdot \frac {1}{cos(\beta) } \cdot  \frac {v_0 \cdot sin(\alpha)}{l}  = \frac {{v_0}^2}{l} \cdot \frac {sin^2 (\alpha)}{cos^3 (\beta)} , ami már csak egy cos(\beta) tényezőben tér el a közölt képlettől. Biztos hogy jól másoltad, vagy én hibáztam valahol?

Előzmény: [1145] HoA, 2012-10-29 23:45:26
[1145] HoA2012-10-29 23:45:26

A képlet elfogadhatóságának alátámasztására vizsgáljunk egy speciális esetet. Legyen \alpha=90o,\beta=0o , vagyis a kötél szabad végét húzzuk egy függőleges fal mentén és tekintsük azt a pillanatot , amikor a kötél éppen vizszintes. A kötél szabad végének sebessége v0 , a szánkóé v1=0 . \Deltat idő múltán a szabad vég elmozdulása v0\Deltat . A feszes kötél merev rúdnak tekinthető. A pillanatnyi forgástengelyt a végpontok sebességének irányára emelt merőlegesek metszéspontjaként szerkesztve a végpontok forgástengelytől mért távolságai: r0 l-nek vehető, r1=v0\Deltat , v1=\Deltav1 , a sebességek a forgástengelytől mért távolsággal arányosak :  \frac {{\Delta}v_1}{ v_0 {\Delta}t } =  \frac { v_0 }{l} . A gyorsulás a = \frac {{\Delta}v_1}{ {\Delta}t }   =  \frac { v_0 ^2 }{l} . A kötélerő ennek m-szerese, összhangban a képlettel , hiszen esetünkben a szereplő szögfüggvény hányados 1/1.

A megközelítés általános \alphaés\beta esetében is alkalmazható, csak a pillanatnyi forgástengelytől mért távolságok és ebből v1 változásának számítása bonyolultabb.

Előzmény: [1144] Syac, 2012-10-29 20:45:14
[1144] Syac2012-10-29 20:45:14

Köszönöm az eddigi válaszokat. Egyetértek mindkét hozzászólóval. A feladat megoldása mégis:

K=\frac{m \cdot v_0^2}{l} \cdot \frac{\sin^2 \alpha}{\cos^4 \beta}

Várom a további ötleteket (lehet, hogy a feladat szövege hibás?).

Köszönöm!

[1143] jonas2012-10-27 22:42:15

Nem lehet, hogy a szánkó a vízszintes részen v0-nál kisebb sebességgel mozgott, és a húzó személy az emelkedőn gyorsabban halad fölfelé?

Előzmény: [1142] lorantfy, 2012-10-27 22:37:14
[1142] lorantfy2012-10-27 22:37:14
Előzmény: [1141] Syac, 2012-10-27 08:57:32
[1141] Syac2012-10-27 08:57:32

Kedves Fizikások!

Az alábbi feladat megoldásához kérnék segítséget:

Egy ember az \alpha hajlásszögű lejtőn állandó v0 sebességgel felfelé haladva elhanyagolható tömegű, l hosszúságú kötél segítségével m tömegű szánkót húz maga után úgy, hogy a szánkó még vízszintesen mozog. A kötél a vízszintessel \beta szöget zár be. Hogyan függ a fellépő kötélerő a \beta szögtől? (A szánkó és a felület közötti súrlódás elhanyagolható.)

Köszönöm!

[1140] gyg2012-10-25 20:06:04

Mindegy, melyiket vesszük állónak. Ha a bal pedál áll, akkor a tengelye, ami balos csavarmenettel van rögzítve a hajtókarhoz, a hajtókar felől nézve óramutató járásával megegyező, tehát a menetet lazító irányba forog. Időközben utánanéztem és egy angol nyelvű forrás a precesszióval magyarázza azt, miért kell a bal pedálra balos menet, igaz, nem írja le precízen. Ha jól értem, a tengely apró mozgása, amennyit a csavarmenet enged, okoz forgatónyomatékot ami nagyobb, mint a csapágy súrlódása miatt keletkező oldó irányú forgatónyomaték és ezért nem tekeredik ki. Ha a csapágy súrlódása rendellenesen megnő, (nem forog a pedál) akkor a hajtástól az ki fog tekeredni.

Előzmény: [1139] stony13, 2012-10-24 21:21:19
[1139] stony132012-10-24 21:21:19

Próbáld úgy elképzelni, hogy nem a pedált csavarod bele a hajtókarba, hanem fordítva, a hajtókart a rögzített pedálba (tulajdonképpen ez történik biciklizés közben is, mert a pedált a talpaddal megközelítőleg vízszintes helyzetben tartod folyamatosan). Milyen irányba kellene forgatni a hajtókart?

Előzmény: [1138] gyg, 2012-10-24 20:14:26
[1138] gyg2012-10-24 20:14:26

Sziasztok. Meg tudná valaki közérthetően és pontosan magyarázni, miért van a kerékpár bal pedálján balmenet, a jobbon jobbmenet? Nyilván azért, mert így nem tekeredik ki üzem közben, de ha csak a pedál és a hajtókar közti tengelyt figyeljük, ahol az említett bal és jobbmenettel csatlakoznak, ott pont a kitekeredő irányba forognak egymáshoz képest. Hogy van ez?

[1137] gildike2012-10-16 13:58:13

köszönöm mindenkinek a segítséget remélem legalább a 2 est összetudom hozni.

[1136] Gézoo2012-10-16 12:22:25

1. Sajnos nem tudom, azt a mentősöktől kellene megtudni, hogy melyik frekvenciát használják.

2. A sok jelentés közül a kérdésed az autótranszformátor régi elnevezését idézi. Tilos olyan helyeken alkalmazni ahol teljes leválasztás az előírás. A leggyakoribb alkalmazási területe a gépjárművek gyújtótrafói.

3. Két módon juthat be. Az egyik a vezetékkel érintkező felületen, a másik a kapacitív csatolás, ahol a testfelszín mint kondenzátor fegyverzete vesz részt a folyamatban.

4. Több elterjed módszere van. Többek között a kapacitív-szaggatós (sokszorozós) elven és a piezo -"transzformátorok" alkalmazásával. Mindkét említett módszer egyenfeszültséget váltófesz képzése nélkül közvetlenül alakít más nagyságú egyenfesszé.

5. Első az, hogy szigetelő eszköz segítségével megszakítsuk az áramkört. Friss levegőn, nyugalomba kell helyezni a sérültet és mentőt kell hívni hozzá. TILOS! Folyadékot itatni vele! 6. U2/N2 = U1/N1 Azaz U2=400 V N2=1200 N1=600 akkor U1= N1*U2/N2

7. Mint 6-os feladatban, de a vasveszteséget célszerű hozzáadni.

Előzmény: [1133] gildike, 2012-10-15 20:01:17
[1135] gildike2012-10-16 12:13:38

sajnos ez a főiskola, a tanár leadott egy bizonyos anyagot erre zh ban meg olyat kérdez ami benne sincs a diákba. számítást egyáltalán nem is vettünk.

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]