KöMaL - Középiskolai Matematikai és Fizikai Lapok
 English
Információ
A lap
Pontverseny
Cikkek
Hírek
Fórum
Játékszabályok
Technikai info
TeX tanfolyam
Regisztráció
Témák

Rendelje meg a KöMaL-t!

ELTE

VersenyVizsga portál

Kísérletek.hu

Matematika oktatási portál

Fórum - Nehezebb matematikai problémák

  Regisztráció    Játékszabályok    Technikai információ    Témák    Közlemények  

Ön még nem jelentkezett be.
Név:
Jelszó:

  [1. oldal]    [2. oldal]    [3. oldal]    [4. oldal]    [5. oldal]    [6. oldal]    [7. oldal]    [8. oldal]    [9. oldal]    [10. oldal]    [11. oldal]    [12. oldal]    [13. oldal]    [14. oldal]    [15. oldal]    [16. oldal]    [17. oldal]    [18. oldal]    [19. oldal]    [20. oldal]    [21. oldal]    [22. oldal]    [23. oldal]    [24. oldal]    [25. oldal]    [26. oldal]    [27. oldal]    [28. oldal]    [29. oldal]    [30. oldal]    [31. oldal]    [32. oldal]    [33. oldal]  

Ha a témához hozzá kíván szólni, először regisztrálnia kell magát.
[737] HoA2013-11-18 15:26:19

A követelmény úgy is megfogalmazható, hogy minden kiválasztott négyzetnek páros, minden nem kiválasztott négyzetnek páratlan számú kiválasztott szomszédja legyen.

Előzmény: [734] kurthyg, 2013-11-17 00:44:52
[736] kurthyg2013-11-17 11:04:40

A kiválasztandó négyzetek sorozata. Számozzuk be a négyzeteket: a bal fölső sarok az 1-es a jobb alsó nxn: tehát balról jobbra és föntről lefelé növekszenek a számok.

Ekkor az út (ha eredetileg minden négyzet fehér volt): 1 3 5 7 9

Ezeket sorban kiválasztva minden négyzet fekete lesz.

Előzmény: [735] Sinobi, 2013-11-17 10:48:31
[735] Sinobi2013-11-17 10:48:31

mi az, hogy út?

Előzmény: [734] kurthyg, 2013-11-17 00:44:52
[734] kurthyg2013-11-17 00:44:52

A következő feladatot szeretném megosztani (persze, lehet, hogy már volt, kb 15 éve olvastam KöMaL-t utoljára, még gimnáziumban).

Adott egy nxn-es négyzetrács csupa fehér négyzettel. Válasszuk ki valamelyik négyzetet, ekkor a kiválasztott négyzet, a tőle jobbra és balra, alatta és fölötte lévők feketévé változnak. És minden egyes későbbi kiválasztás ellentétes színűre változtatja a kiválasztott négyzetet és a szomszédait.

Feladat olyan utat találni, amelynek végén az összes négyzet fekete lesz. Hogyan adható meg általános megoldás?

(Pl.: 1x1-es nél triviális. 2x2-esnél minden négyzetet ki kell választani. 3x3-asnál a sarkokat és a középső négyzetet.)

A probléma általánosítása: az nxn-es négyzetrács néhány négyzete fehér, néhány négyzete fekete. Milyen út vezet csupa fekete négyzethez? Hogyan kereshető meg a megoldás? Van-e mindig megoldás?

[733] w2013-10-25 23:07:23

A következő egy rendkívül érdekes, a pozitív valós számokra bizonyítandó egyenlőtlenség (négyzetreemelve a valósokra is érvényes marad!). Annál inkább érdekes, hogy milyen egyszerű alakú, negyedfokú egyenlőtlenség.

a^2+b^2+c^2\ge\sqrt{3(a^3b+b^3c+c^3a)}

Különösen szokatlan az egyenlőség-esete, amit mindenképpen érdemes előre megfigyelni.

(A feladat egyébként valamennyire ismert, egy idő múlva majd elárulom, hol találtam.)

[732] Sinobi2013-10-20 01:38:34

mármint l:=-9/14*m.

Előzmény: [731] Sinobi, 2013-10-20 01:36:18
[731] Sinobi2013-10-20 01:36:18

Bocsánat, nem ilyen alakra kell a végén hozni. Ezt még tovább kell alakítanod, hogy l:=-14/9*m, s akkor azt kapod, hogy:

 \lim_{l\to\infty} \bigg( 1 + \frac{1}{l} \bigg) ^{-14/9*l}= \bigg( \lim_{l\to\infty} \bigg( 1 + \frac{1}{l} \bigg) ^{l} \bigg) ^{-14/9}

Amiben még mindig ott van n a kitevőben. De azzal nem tudsz semmit se kezdeni. Igazából már Euler se tudott vele semmit kezdeni, csak feltűnt neki, hogy az olyan kifejezéseknek, melyekben n a kitevőben van, a limesze gyakran  \lim_{l\to\infty} (1+1/l)^l -lel és algebrai műveletekkel megadható, ezért a \lim_{l\to\infty} (1+1/l)^l-et elnevezte magáról e-nek. Azóta általában az a feladat, hogy a kapott sorozatokat valahogy leredukáljuk erre a kifejezésre.

Előzmény: [730] Sinobi, 2013-10-20 01:12:11
[730] Sinobi2013-10-20 01:12:11

Mit tanultatok már határértékből? Szerintem valami ilyesmi kell legyen:

 \lim_{n\to\infty} \bigg( \frac{9n-2}{9n+5} \bigg) ^{2n-4}

kicsit alakítjuk a limesz mögött álló formulát:

  \bigg( \frac{9n-2}{9n+5} \bigg) =  \bigg( \frac{9n+5}{9n+5} - \frac{7}{9n+5} \bigg) =  \bigg( 1 - \frac{7}{9n+5} \bigg) =  \bigg( 1 - \frac{7 \cdot 2 / 9}{2n+5 \cdot 2/9} \bigg)

bevezetjük az m:=2n+10/9 \frac{}{} változót. Ekkor a képletünk:

 \lim_{m\to\infty} \bigg( 1 + \frac{-14/9}{m} \bigg) ^{m-46/9}

amit szétbontva két limesz szorzatára (majd megnézzük, hogy léteznek):

 \lim_{m\to\infty} \bigg( 1 + \frac{-14/9}{m} \bigg) ^{m-46/9} = \lim_{m\to\infty} \bigg( 1 + \frac{-14/9}{m} \bigg) ^{m} \cdot \lim_{m\to\infty} \bigg( 1 + \frac{-14/9}{m} \bigg) ^{-46/9}

A szorzat jobb oldala 1-hez tart, a bal oldala e^-14/9-hez, tehát az eredeti is e^-14/9-hez, ami tényleg kb 0.2110.

Előzmény: [729] wartburg, 2013-10-19 23:16:25
[729] wartburg2013-10-19 23:16:25

Kedves Topictársak, sehogy sem boldogulok az alábbi határérték feladattal: keressük az alábbi sorozat határértékét: [(9*n-2)/(9*n+5)]#(2*n-4) (a # jel hatvány jelet takarna, tehát a (2*n-4) a tört kitevője) Nem bírom a hatványt "levarázsolni" a kifejezésből, s a tört számlálóját és nevezőjét is leosztva n-nel én egyet kapnék határértéknek, ami viszont bármilyen kitevővel egy lenne. Ugyanakkor persze az Excel függvény ábrázolás szerint 0,22XXXX lenne valahol a határérték, de nekem nem jön ki ez "tudományosan". Előre is köszönöm a segítséget!

[728] nadorp2013-10-09 15:56:10

Arra gondoltam, hogy legyen "valódi" lineáris függvény:-)

Előzmény: [727] Lóczi Lajos, 2013-10-09 14:27:42
[727] Lóczi Lajos2013-10-09 14:27:42

Érdekes, hogy így megbonyolítottad, és nem szimplán azt írtad, hogy f(x):=0, ha x racionális.

Előzmény: [726] nadorp, 2013-10-09 12:42:30
[726] nadorp2013-10-09 12:42:30

Ettől persze az állítás nem igaz. Legyen f(x) a következő

f(x)=\left\{\matrix{x \cr 1}\right.\matrix{ha& x\in Q \cr ha& x \notin Q}

Ekkor f(x) a racionális számok között additív, viszont tetszőleges r irracionális számra

f(r+1)=1\neq2=f(r)+f(1)

Előzmény: [725] nadorp, 2013-10-09 09:26:56
[725] nadorp2013-10-09 09:26:56

A hivatkozott link azt bizonyítja szerintem, hogy létezik az egyenletnek nemlineáris megoldása.

Előzmény: [723] w, 2013-10-08 14:56:22
[724] Ménkűnagy Bundáskutya2013-10-09 08:45:17

2. (valós) Legyen A azon valós számok halmaza, melyeknek tizedestört alakja

*,*11...110s0a10a20a30a4...,

vagyis valahonnan kezdve minden második jegy 0, előtte pedig néhány (esetleg 0 darab) 1-es áll (ez üres feltétel, csak így világosabb lesz). A függvény legyen A-n kívül 0, egy A-beli elemre pedig vegyük az első olyan pontot, ahonnan ez fennáll: x=*,*0s0a10a2..., és s előtt három jeggyel nem 0 áll. A 0s előtt közvetlenül álló egyesek száma legyen N. Ekkor legyen f(x)=(-1)s.N,a1a2a3....

Legyen [a,b] tetszőleges nemelfajuló intervallum, y pedig tetszőleges valós szám. Kezdjünk felírni egy valós számot. Az első sok jegyét állítsuk be úgy, hogy azok garantálják, hogy [a,b]-be esik. Ezután tegyünk le száz darab 2-est, majd |y| egész része darab 1-est, ezután lőjük be az előjelet, majd írjuk be y tizedesjegyeit 0-kal összefésülve. Az így kapott szám f-értéke y.

(komplex) Legyen f egy jó valós-valós függvény. Legyen hozzá F:C\rightarrowC a következő: F(x+iy)=f(x)+if(y). Tetszőleges kicsi négyzetben, körben stb van tengelypárhuzamos téglalap, és ha F(x+iy)=u+iv a cél, akkor legyen x a téglalap valós vetületéből olyan, hogy f(x)=u, y pedig a képzetes vetületből olyan, hogy f(y)=v. Ekkor F(x+iy)=f(x)+if(y)=u+iv.

Előzmény: [722] marcius8, 2013-10-08 12:41:31
[723] w2013-10-08 14:56:22

1. A válasz: nem igaz. Lásd itt.

Előzmény: [722] marcius8, 2013-10-08 12:41:31
[722] marcius82013-10-08 12:41:31

Ha valaki tud, segítsen:

1. Egy f(x) függvény additív, ha minden "p" és "q" számra teljesül, hogy f(p+q)=f(p)+f(q). Igaz-e hogy ha egy függvény a racionális számok halmazán additív, akkor ez a függvény a valós számok halmazán is additív?

2. Keressünk olyan R-->R függvényt, amely minden intervallumon minden valós számot felvesz. Illetve keressünk olyan C-->C függvényt, amely minden "négyzet alakú tartományon" (vagy "minden kör alakú tartományon") minden komplex számot felvesz.

Mindenkinek köszönöm a segítségét. Bertalan Zoltán.

[721] Zilberbach2013-10-08 00:42:47

Pontosítok: 2 és 3 között is van egy hirtelen (föl)ugrás a függvény értékében, 3 és 4 között pedig több mint egy hirtelen (föl)ugrás.

Előzmény: [720] Zilberbach, 2013-10-07 20:38:32
[720] Zilberbach2013-10-07 20:38:32

A függvényről még annyit, hogy a továbbiakban egyre kisebb és egyre gyakoribb "ugrálással" emelkedve, aszimptotikusan közelíti a 74 százalék kitöltési tényezőt.

Előzmény: [718] Zilberbach, 2013-10-03 13:32:27
[719] izsák2013-10-07 09:46:14

Érdekes, hogy két "amatőr" beszélget szimpla matek problémáról, a matematikusok hallgatnak, vagy (ha az eddig válaszolók azok,) akkor hamis válaszokat adnak. Senki nem tudja a választ?

Előzmény: [718] Zilberbach, 2013-10-03 13:32:27
[718] Zilberbach2013-10-03 13:32:27

Igen, a maximuma x=1 -nél van, akkor a kitöltési tényező = 100

X=1 -től x=1,999... -ig monoton csökken.

x=2 -nél a kitöltési tényező értéke hirtelen fölugrik, majd ismét monoton csökken egészen 3 -ig, ahol megint hirtelen megnő, majd ismét monoton csökken 4 -ig.

A függvény azután is ugrál: egy ideig monoton csökken, azután hirtelen megugrik, majd megint monoton csökken, de már nem csak egész számonként, hanem egyre gyakrabban.

Előzmény: [717] izsák, 2013-10-03 08:32:28
[717] izsák2013-10-03 08:32:28

Igaz! Ott minimuma van a függvénynek. A maximuma milyen x értéknél lehet? X=1 ? A kettő között és x>2 esetén hogyan alakulhat? Milyen lehet a függvény alakja?

Előzmény: [716] Zilberbach, 2013-10-02 20:24:42
[716] Zilberbach2013-10-02 20:24:42

Hátha mégis érdekel valakit a válasz (habár így már nyilvánvaló, hogy ez nem nehéz matematikai probléma):

x = 1,9999... értéknél kapjuk a legalacsonyabb kitöltési tényezőt.

Előzmény: [715] Zilberbach, 2013-10-02 11:32:06
[715] Zilberbach2013-10-02 11:32:06

Ehhez kapcsolódva lenne nekem is egy kérdésem.

Ha a kitöltendő nagy gömb sugara = r, és a kitöltéshez használt kisebb gömbök sugara = r/x, akkor milyen x értéknél kapjuk a legalacsonyabb kitöltési tényezőt?

Előzmény: [705] izsák, 2013-09-25 08:05:38
[714] Erben Péter2013-10-01 11:55:11

Itt van egy elég alapos történeti áttekintés: http://bib.irb.hr/datoteka/402976.main1.pdf

Ha jól értem, az 1828-as Möbius cikk olyan - elég magas fokszámú - polinomot ad meg, amely kapcsolatot termet az oldalak hossza, a köréírt kör sugara, és a sokszög területe között. (Általában n-oldalú húrsokszögekkel foglalkozott.)

A Robbins-cikket még nem találtam meg, így azt nem tudtam megnézni, hogy adott-e explicit formulát n=5 esetén.

Előzmény: [713] marcius8, 2013-10-01 10:49:59
[713] marcius82013-10-01 10:49:59

Köszönöm, hogy foglalkoztál az általam felvetett kérdéssel. Az az igazság, hogy akármit is csináltam, mindig az lett a vége, hogy egy ötödfokú egyenletet kell megoldani. Valószínűleg az általad felírt egyenlet is ötödfokúra vezethető vissza. Tisztelettel: Bertalan Zoltán

Előzmény: [712] w, 2013-09-30 20:11:49

  [1. oldal]    [2. oldal]    [3. oldal]    [4. oldal]    [5. oldal]    [6. oldal]    [7. oldal]    [8. oldal]    [9. oldal]    [10. oldal]    [11. oldal]    [12. oldal]    [13. oldal]    [14. oldal]    [15. oldal]    [16. oldal]    [17. oldal]    [18. oldal]    [19. oldal]    [20. oldal]    [21. oldal]    [22. oldal]    [23. oldal]    [24. oldal]    [25. oldal]    [26. oldal]    [27. oldal]    [28. oldal]    [29. oldal]    [30. oldal]    [31. oldal]    [32. oldal]    [33. oldal]  

  Regisztráció    Játékszabályok    Technikai információ    Témák    Közlemények  

Támogatóink:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley