Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?

Fórum: Nehezebb matematikai problémák

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]  

Szeretnél hozzászólni? Jelentkezz be.
[145] levi2005-04-22 15:51:02

Be kell húzni az AE vagy CD pontokon átmenő egyenes(ek)et. Ekkor ott vagyunk, hogy már megint háromszögeket kapunk, és akkor már megint vagy az van hogy a végtelenségig kapjuk a háromszögeket vagy ismét behúzunk egy olyan egyenest amit te rajzoltál, de ezzel már megint új pontokat kapunk, amiket össze kell kötnünk a többivel, ismét csak háromszögeket kapva...

Előzmény: [143] nadorp, 2005-04-22 09:07:32
[144] lorantfy2005-04-22 14:57:41

Hát igen! Ha kész van, akkor már nagyon egyszerű. Kösz, hogy foglalkoztatok vele!

Előzmény: [143] nadorp, 2005-04-22 09:07:32
[143] nadorp2005-04-22 09:07:32

Kedves Levi !

Nem mindig keletkezik DEF háromszög.

Más:

Visszatérve a hengeres példára, van egy kicsit egyszerűbb megoldás is ( ez persze semmit nem von le a Joe által közölt eljárás érdeméből):

r^2m=r^2\sqrt{R^2-r^2}=\sqrt{r^4(R^2-r^2)}=\sqrt{4\frac{r^2}{2}\cdot\frac{r^2}{2}\cdot(R^2-r^2)}, és innen már mehet a számtani és mértani közép közti összefüggés a gyök alatti kifejezésre.

Előzmény: [142] levi, 2005-04-21 22:41:20
[142] levi2005-04-21 22:41:20

Bizonyítsuk be, hogy nem lehet az (euklideszi) síkban véges számú pontot megadni úgy, hogy ha minden egyes pontpár által meghatározott egyenest behúzunk, akkor minden egyes ilyen egyenesre legalább három pont illeszkedik a megadottak közül!

Próbáljunk meg keresni egy ilyen N (véges) számot. Először jelöljünk ki a sikban 3 nem egy egyenesre eső pontot. Ezek akkor meghatároznak egy háromszöget. Legyen ez ABC háromszög. Azt szeretnénk, ha minden oldalon lenne még egy pont (hogy meglegyen az egyenesenkénti 3 pont). Jelöljük ezeket D,E,F-fel. Ekkor azonban a DEF háromszögben áll fenn az előző eset. Jelöljük G,H,I pontokat a megfelelő oldalakon. Ez újabb háromszöget határoz meg, tehát ezt a végtelenségig lehet folytatni, azaz nem lehet véges számú pontot megadni. Ha az ABC háromszőgnél a D vagy E ill. F pontokat nem a háromszög oldalán jelöljük ki, hanem azon az egyenesen, ami átmegy az A és B pontokon, azzal sem "nyerünk" semmit, hiszen azzal csak egy újabb háromszöget jelöltünk ki, amiben ismét csak nem lehet véges számú pontot megadni.

Előzmény: [124] joe, 2005-04-06 19:17:25
[141] joe2005-04-21 20:07:26

Szerintem jó, legalábbis az eredmény; a többi megítélésére így hirtelen nem vállalkoznék, mert hajlamos vagyok a "bizonyítási hézagokat" átugrálni.

Szerintem annyit egyszerűsíthetünk, hogy "ha a három egyenes közül semmelyik kettő nem esne egybe, akkor találnánk olyan pontot, ahol az egyik fgv.-érték negatív, a másik kettő pozitív". A többi egy kicsit bonyolult, de valószínűleg helyes. Egyébként ilyen "szorzatos függvényspekulációval" még nem találkoztam; nagyon jó ötlet, és egész biztosan máshol is használható.

Amire én gondoltam, az egy kicsit egyszerűbb, de csak miután az ember rájött. Valószínűleg azt is egy helyenként homályos és egészében véve tekervényes gondolatmenet előzné meg. A módszer a következő:

Szorzatot tudunk összeggel fölülről becsülni (AG). Az (R-m)(R+m)m esetében két problémánk van:

1) Az egyenlőtlenség nem éles, mert a három tényező sosem lehet egyenlő,

2) A felső becslés is tartalmaz változót.

Mindkét probléma kiküszöbölhető az alábbi trükkel: a kifejezést beszorozzuk egy számmal; ez a szélsőérték helyén nyilván nem változtat. Úgy tekintjük, hogy mindhárom tényezőt egy bizonyos számmal szoroztuk, tehát keressük a(R-m)*b(R+m)*cm kif. maximumát. Az a, b, c -t úgy választjuk, hogy:

1) a(R-m) + b(R+m) + cm -ből kiessen az m (változó);

2) Az a(R-m) = b(R+m) = cm egyenletrendszernek egyértelmű megoldása legyen m-re.

Egyenlőre ennyire vállalkozom; a szétírást rábíznám olyasvalakire, aki jobban szeret (és tud) texelni, mint én...

Előzmény: [140] levi, 2005-04-21 17:05:40
[140] levi2005-04-21 17:05:40

Tehát keressük az (R-m)(R+m)m szorzat maximumát(0<m<R, R>0). Ha felbontjuk a zárójeleket a -m3+R2m -et kapjuk. Általánosságban tehát keressük a f(x)=-x3+R2x függvény maximumhelyét (helyeit). Legyen x maximumhely, ekkor f(x) maximumérték, f(y) tetszőleges érték, ekkor teljesül az f(x)-f(y)\ge0. Ez egyenlő ezzel: -x3+R2x+y3-R2y\ge0. Kiemelések után: (y-x)(y2+xy+x2-R2)\ge0. A második tag y-ra nézve egy másodfokú egyenletként is felfogható, tehát a felírható így: (y-y1)(y-y2), ahol y1 = \frac {-x + \sqrt{4R^2-3x^2}}2, y2=\frac {-x - \sqrt{4R^2-3x^2}}2. Tehát az egyenletünket felírhatjuk 3 szorzatként: (y-x)(y-y1)(y-y2)\ge0. Ezek az elsőfokú polinomok a koordinátasíkban az g(x)=x egyenessel párhuzamosak. Két eset lehetséges: vagy egybeesnek vagy nem. Ha nem esnek egybe, akkor lesz olyan hely ahol az egyik vagy mindhárom ellenkező előjelű lesz, ekkor f(x)-f(y)\le0 vagy kettő lesz ellenkező előjelű ill. megegyezik az előjelük, és ekkor f(x)-f(y)\ge0, tehát f(x) nem maximumérték, ezért x nem maximumhely. Tehát a 3 egyenesnek egybe kell esnie. Vizsgáljuk meg hogy mikor esik 2 egybe! 3 tag van, így 3 esetet kell megvizsgálni: x=y1, x=y2 vagy y1=y2. Az utóbbi esetben a másodfokú egyenlet diszkriminánsa nulla, azaz 4R2-3x2=0. Ebből x=2\sqrt {\frac 13}R, de ez nagyobb, mint R, tehát nem eleme az értelmezési tartománynak. Az x=y2 esetben nem valós szám a megoldás, míg x=y1 esetben: x=\frac {-x + \sqrt{4R^2-3x^2}}2, rendezve 3x2=R2, amiből következik az x=\sqrt {\frac 13}R. Ekkor y2=-2\sqrt {\frac 13}R, azaz y-y2=y+2\sqrt {\frac 13}R. Ez mindig pozitív lesz (mert R>0, 0<y<R). Az első két tag is mindig pozitív lesz, azaz a szorzat mindig nagyobb-egyenlő lesz mint 0. A szorzat maximumát tehát az x=\sqrt {\frac 13}R helyen veszi fel. Visszatérve tehát a hengerhez, a m=\sqrt {\frac 13}R, a sugár (\sqrt{R^2-m^2}) r=\sqrt {\frac 23}R, és a térfogat pedig V=\frac 1{\sqrt3} \frac43 R^3 \pi. (úgy érzem, hogy még finomítanom kellene ezen, egy helyen eléggé "bukdácsol" a bizonyítás...)

[139] Sirpi2005-04-21 14:28:40

Végül én sem oldottam meg, valaki elmondta órán a megoldást. Továbbra is állítom, hogy szép feladat, és szerintem nehéz. Aki nem ismeri a trükköt, nem könnyen jön rá. Annyit szerintem még nyugodtan elárulhatunk, hogy a Fermat n=4-re való megoldhatatlanságánál a végtelen leszállás módszerére utaltál.

Előzmény: [137] joe, 2005-04-20 20:35:34
[138] lorantfy2005-04-21 13:50:51

Hello Joe!

Kösz a felvezetést!

Előzmény: [136] joe, 2005-04-20 20:03:55
[137] joe2005-04-20 20:35:34

Tényleg igaz, amit mesélnek róla? Mármint ami a megoldás kitalálásának időtartamát illeti... Én nem akarom elhinni. Bár én magam nem próbálkoztam vele, hamarabb lőtem le magam előtt könyvből.

Előzmény: [131] Sirpi, 2005-04-19 08:45:03
[136] joe2005-04-20 20:03:55

r*r*m maximumát keressük, ahol r*r + m*m = R*R (m maradjon a "félmagasság"; a legnagyobb félhengerből úgyis könnyen csinálhatunk legnagyobb "egészhengert").

Most állandó R és változó r mellett keressük

(R - m)(R + m)m

kifejezés maximumát. Innen tovább nem akarom lőni, van egy érdekes elemi módszer ilyen esetekre (lényegében algebrai zsonglőrködés): tudjuk, hogyan becsüljünk szorzatot fölülről(?); erre az esetre ezt a módszert egy kicsit kozmetikázni kell, hogy a becslés éles legyen. Hogyan?

Előzmény: [130] lorantfy, 2005-04-18 22:47:44
[135] joe2005-04-20 19:56:28

Szerintem nem a téglalap max. területét keressük, hanem a henger max. térfogatát keressük...ahogy ez írva vagyon...a forgástestekkel vigyázzunk.

Előzmény: [134] levi, 2005-04-20 18:14:06
[134] levi2005-04-20 18:14:06

24. feladatra: A gömbbe írt henger alapkörének sugara r, magassága 2m. Az ábra szerint a téglalap maximális területét keressük. Ezt a téglalapot négy egybevágó r*m területű téglalapra oszthatjuk. A nagy téglalap területe akkor lesz maximális ha a kis téglalapok területei maximálisak lesznek. Az r*m maximális értékét keressük. A számtani és mértani közepekre fennálló egyenlőség-egyenlőtlenség miatt r*m akkor maximális ha r=m. Pitagorasz tétel miatt r2 + m2 = R2, és mivel r=m, ezért R=\sqrt2r. Vagyis a henger alapkörének sugara r=\sqrt{\frac12}R. A magassága m=2r=\sqrt2R. A henger térfogata V=r2m\pi=\frac{\sqrt2}2 R3 \pi. Remélem nem írtam el valahol(elég nehéz ez a tex...). És hogy nincs benne semmi nem elemi.

[133] joe2005-04-19 19:06:32

Jó, akkor egy kis segítség: a módszer egy kicsit (lényegileg vagy inkább elvileg) hasonlít arra, amivel megmutatják, hogy a nagy Fermat-sejtés igaz a 4-es kitevőre.

Előzmény: [124] joe, 2005-04-06 19:17:25
[132] joe2005-04-19 19:04:55

És sikerült megoldani? :-)

Előzmény: [131] Sirpi, 2005-04-19 08:45:03
[131] Sirpi2005-04-19 08:45:03

Én szívesen hozzászólnék, de ismerem a feladatot, úgyhogy inkább csöndben is maradok. Viszont szerintem nagyon jó feladat. Anno, mikor feladták, nem mondták meg, hogy igaz-e az állítás, úgyhogy egy fél füzetet telerajzoltam a különböző konstrukcióimmal :-)

Előzmény: [129] joe, 2005-04-15 18:19:19
[130] lorantfy2005-04-18 22:47:44

24. feladat: Adjátok meg az R sugarú gömbbe írható max. térfogatú henger méreteit elemi úton!

[129] joe2005-04-15 18:19:19

Foglalkozik legalább egyvalaki érdemben ezzel? Ha nehéz, akkor beszélgethetünk...ha van kérdés...esetleg...

Előzmény: [124] joe, 2005-04-06 19:17:25
[128] Doom2005-04-08 12:35:17

így már mindjárt nehezebb :)

Előzmény: [127] joe, 2005-04-07 19:40:06
[127] joe2005-04-07 19:40:06

Hát igen, úgy látszik, formában voltam, amikor írtam... Kifelejtettem a "kivéve a minden pont egyetlen egyenesen triviális esetet" mondatot.

Előzmény: [126] Doom, 2005-04-06 20:02:25
[126] Doom2005-04-06 20:02:25

ööö... nekem úgy tűnik, hogy 3 pont egy egyenesen kielégíti a feladat feltételeit... Vagy csak nem sikerült megértenem a problémát?

Előzmény: [124] joe, 2005-04-06 19:17:25
[125] joe2005-04-06 19:18:50

Természetesen 123. feladat volt az előző... (jól tudok számolni :-)

Előzmény: [124] joe, 2005-04-06 19:17:25
[124] joe2005-04-06 19:17:25

23. feladat: Bizonyítsuk be, hogy nem lehet az (euklideszi) síkban véges számú pontot megadni úgy, hogy ha minden egyes pontpár által meghatározott egyenest behúzunk, akkor minden egyes ilyen egyenesre legalább három pont illeszkedik a megadottak közül!

Aki ismeri, ne lőjön agyon érte, hogy beírtam, és ne említsen róla semmi információt! Aki nem ismeri, ÖNÁLLÓAN próbálja megoldani, minden szakirodalom nélkül! Azért tettem ebbe a topicba, mert bár az sem igaz, hogy a megoldás könnyű, az sem igaz, hogy nehéz...

[123] Gubbubu2005-01-13 20:16:11

OK, feladom. Katasztrofálisan elnéztem az egészet, remélem elnézitek ti is. :-))

Előzmény: [122] jonas, 2005-01-13 17:43:27
[122] jonas2005-01-13 17:43:27

Biztos, hogy T×T\toT? A feladatban ugy tunik, hogy csak egy (T-beli) argumentumok kapnak.

Előzmény: [121] Gubbubu, 2005-01-13 17:26:22
[121] Gubbubu2005-01-13 17:26:22

Úgy nézem, a görög betűvel jelölt függvények pedig T×T->T alakúak kell hogy legyenek.

Előzmény: [119] Gubbubu, 2005-01-13 17:18:07

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]