Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?

Fórum: Érdekes matekfeladatok

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]    [94]    [95]    [96]    [97]    [98]    [99]    [100]    [101]    [102]    [103]    [104]    [105]    [106]    [107]    [108]    [109]    [110]    [111]    [112]    [113]    [114]    [115]    [116]    [117]    [118]    [119]    [120]    [121]    [122]    [123]    [124]    [125]    [126]    [127]    [128]    [129]    [130]    [131]    [132]    [133]    [134]    [135]    [136]    [137]    [138]    [139]    [140]    [141]    [142]    [143]    [144]    [145]    [146]    [147]    [148]    [149]    [150]    [151]    [152]    [153]    [154]    [155]    [156]    [157]    [158]    [159]    [160]    [161]    [162]    [163]    [164]    [165]    [166]    [167]    [168]    [169]    [170]    [171]    [172]    [173]    [174]    [175]    [176]    [177]    [178]    [179]    [180]    [181]    [182]    [183]    [184]    [185]    [186]    [187]    [188]    [189]    [190]    [191]    [192]    [193]    [194]    [195]    [196]    [197]    [198]    [199]    [200]    [201]    [202]    [203]    [204]    [205]    [206]    [207]    [208]    [209]    [210]    [211]    [212]    [213]    [214]    [215]    [216]    [217]    [218]    [219]    [220]    [221]    [222]    [223]    [224]    [225]    [226]    [227]    [228]    [229]    [230]    [231]    [232]    [233]    [234]    [235]    [236]    [237]    [238]    [239]    [240]    [241]    [242]    [243]    [244]    [245]    [246]    [247]    [248]    [249]    [250]    [251]    [252]    [253]    [254]    [255]    [256]    [257]    [258]    [259]    [260]    [261]    [262]    [263]    [264]    [265]    [266]    [267]    [268]    [269]    [270]    [271]    [272]    [273]    [274]    [275]    [276]    [277]    [278]    [279]    [280]    [281]    [282]    [283]    [284]    [285]    [286]    [287]    [288]    [289]    [290]    [291]    [292]    [293]    [294]    [295]    [296]    [297]    [298]    [299]    [300]    [301]    [302]    [303]    [304]    [305]    [306]    [307]    [308]    [309]    [310]    [311]    [312]    [313]    [314]    [315]    [316]    [317]    [318]    [319]    [320]    [321]    [322]    [323]    [324]    [325]    [326]    [327]    [328]    [329]    [330]    [331]    [332]    [333]    [334]    [335]    [336]    [337]    [338]    [339]    [340]    [341]    [342]    [343]    [344]    [345]    [346]    [347]    [348]    [349]    [350]    [351]    [352]    [353]    [354]    [355]    [356]    [357]    [358]    [359]    [360]    [361]    [362]    [363]    [364]    [365]    [366]    [367]    [368]    [369]    [370]    [371]    [372]    [373]    [374]    [375]    [376]    [377]    [378]    [379]    [380]    [381]    [382]    [383]    [384]    [385]    [386]    [387]    [388]    [389]    [390]    [391]    [392]    [393]    [394]    [395]    [396]    [397]    [398]    [399]    [400]    [401]    [402]  

Szeretnél hozzászólni? Jelentkezz be.
[1195] qer2006-03-15 14:43:59

218.feladatra: Először is legyen F egy tetszőleges felület, és \chi(F)=c-e+l (ahol c a felületen lévő csúcsok, e az élek, l a lapok száma). Nevezzük ezt mondjuk Euler-karakterisztikának. Az Euler-féle poliédertétel nyílván azt jelenti, hogy \chi(gömbfelület)=2.

Ezután vizsgáljuk a körlap Euler-karakterisztikáját. Ez nyílván egy pontból, egy hurokélből és egy lapból áll, azaz \chi(körlap)=1-1+1=1.Az könnyen látható, hogyha egy gömbfelületből kivágunk egy körlapot, akkor egy másik körlap marad.

Tórusz Euler karakterisztikáját (azaz k=1 esetre a kérdésre a választ) ugyanúgy számíthatjuk ki mint a körlapnál, azaz keresünk (egy lehetőleg minél egyszerűbb) felbontást. Vegyünk egy tóruszt, húzzunk be egy délkört, majd ottt vágjuk szét, de jegyezzük meg, hogy azok összetartoznak. Ha kiegyenesítjük, akkor egy hengerpalástot kapunk. Itt egy "magasság" mentén vágjuk szét a felületet, és ha kiegyenesítjük, akkor egy téglalapot kapunk, ahol a szemközti élek összetartoznak (azaz képzeletben összeragasztjuk őket). A két él egy pontban metszi egymást. Így \chi(tórusz)=1-2+1=0.

Hogy meghatározhassuk más k-ra is az értéket, először is vegyünk egy tetszőleges F felületet, majd vágjunk ki belőle egy körlapot, vizsgáljuk, hogyan változik az Euler-karakterisztikája. Nyílván, ha egy lapot távolítunk (ami olyan mintha egy körlapot), akkor eggyel kevesebb lapja lesz az F felületnek, azaz l helyett l-1-et kell venni, azaz eggyel csökken az Euler-karakteriszika.

Ha két felület adott (mondjuk F és G), mindkettőből eltávolítunk egy-egy körlapot, majd a körlapon úgy veszünk fel csúcsokat, hogy mindkettőn ugyanannyi számú legyen (ez nyílván nem változtatja meg az Euler-karakterisztiká, mivel egy új ponttal egy új él is keletkezik), és a csúcsokat és az éleket összeragasztjuk, akkor a keletkező felület Euler-karakterisztikája egyenlő lesz \chi(F)+\chi(G)-2-vel.

Tórsuz úgy kapunk ha egy gömböt és tóruszt összeragasztunk, így \chi(k=1)=2+0-2=0 (persze ez nem újdonság,az eredmény az lett, amit vártunk). k=2 eset a k=1-re kapott felületből származik, ha még egy tóruszt ragasztunk hozzá, így \chi(k=2)=0+0-2=(2+0-2)+0-2=2-2*(-2)=-2. Folytatva, tetszőleges k-ra, azt kapjuk, hogy \chi(k)=2-2k.

Előzmény: [1187] Csimby, 2006-03-13 19:56:42
[1196] qer2006-03-15 16:13:23

219.feladatra:

Ez csak egy sejtés, de talán jó. k=1,2,3-ra (szerintem érdektelen) de nyílván jó a gömbfelület. k=4-re is a gömbfelület jön ki, elég egy tetraédert vizsgálni. k=5,6,... értékekre szerintem egy egyoldalú rendre 0,-2,... Euler-karakterisztikájú felület a megfelelő.

Előzmény: [1187] Csimby, 2006-03-13 19:56:42
[1197] ágica2006-03-15 16:34:26

:)

g'(x)=\int_0^{\pi}\sin{(ny-x\sin{y})}\sin{y}dy

ez parciálisan integrálva:

[-\cos{y}\sin{(ny-x\sin{y})}]_0^{\pi}+\int_0^{\pi}(n-x\cos{y})\cos{(ny-x\sin{y})}\cos{y}dy

itt az első tag nulla, a második tagot pedig felbonthatjuk két integrál különbségére:

n\int_0^{\pi}\cos{(ny-x\sin{y})}\cos{y}dy-x\int_0^{\pi}(1-\sin^2{y})\cos{(ny-x\sin{y})}dy

ennek második tagját még tovább bontva kapjuk:

n\int_0^{\pi}\cos{(ny-x\sin{y})}\cos{y}dy-xg(x)-xg''(x)

szorozzuk végig x-szel az egyenletet:

xg'(x)=nx\int_0^{\pi}\cos{(ny-x\sin{y})}\cos{y}dy-x^2g(x)-x^2g''(x)

az integrálos tagról könnyen belátható, hogy n2g(x)-el egyenlő, ugyanis:

nx\int_0^{\pi}\cos{(ny-x\sin{y})}\cos{y}dy-n^2g(x)=

=-n\int_0^{\pi}(n-x\cos{y})\cos{(ny-x\sin{y})}dy=

=-n[\sin{(ny-x\sin{y})}]_0^{\pi}=0

innen pedig már csak át kell rendezni.

Egyébként, lehet hogy hülye kérdés, de mi indokolta a Bessel-függvények definiálásakor azt az 1/\pi-s szorzót? (Mondjuk gondolom más "hasznuk" is van azon túl, hogy többek között ők is megoldják ezt a differenciálegyenletet.:)

Előzmény: [1193] Lóczi Lajos, 2006-03-14 23:38:41
[1198] Lóczi Lajos2006-03-15 17:51:28

Szép. Az \frac{1}{\pi} tényezőnek amúgy semmi más szerepe nincs, csak egy normáló tényező, hogy a Bessel-függvények integrálja 0-tól \infty-ig 1 legyen.

Előzmény: [1197] ágica, 2006-03-15 16:34:26
[1199] qer2006-03-15 18:11:53

Ezt nagyon elnéztem, k=5,6,7-re mind megfelel az egyoldalú, 0 Euler-karakterisztikájú felület (két projektív sik összege).

Előzmény: [1196] qer, 2006-03-15 16:13:23
[1200] jonas2006-03-18 19:00:58

Másrészt 7-ig egy közönséges tórusz is megfelel.

Előzmény: [1199] qer, 2006-03-15 18:11:53
[1201] lgdt2006-03-18 20:27:57

úgy látom, senkit sem hozott lázba a feladat, pedig érdekes. :-/ leírom a megoldást.

1. ki lehet nyírni, mert Zk (a k-dimenziós egész koordinátájú vektorok halmaza, ezek lehetnek a bolha stratégiái) és N között van egyértelmű megfeleltetés, és minden lövéssel ki tudunk zárni egy vektort, ha az n-edik másodpercben az n-edik vektor n-szeresére lövünk.

2. ki lehet nyírni, mert a stratégiák számegyeneséről az n-edik csapással egy \frac{1}{n} hosszúságú intervallumot zárunk ki, és \sum{\frac{1}{n}} nem konvergens.

3. megúszhatja, mert a stratégiák síkjáról az n-edik csapással egy \frac{1}{n^2} nagyságú területet zárunk ki, és \sum{\frac{1}{n^2}} konvergens.

Előzmény: [1183] lgdt, 2006-03-10 19:19:16
[1202] lorantfy2006-03-19 15:55:20

221. feladat: Oldjuk meg a p3+3p=7x+3 egyenletet, ahol p prímszám és az x egész szám.

(Műszaki főiskolák Hajós György matematika versenye 2003.)

[1203] lorantfy2006-03-19 16:00:42

222. feladat: Számítsuk ki a következő határozott integrál értékét:

\int_0^{\pi} \frac{xsinx}{1+cos^2x}dx

[1204] Lóczi Lajos2006-03-19 22:07:35

Szép feladat. Megoldásvázlat: végezzük el az y=\pi-x helyettesítést. Ekkor egy egyenletet kapunk az ismeretlen integrálra, ahol szerepelni fog egy másik integrál is, ami azonban elemien kiszámolható (egy arkusz tangenses összetettfüggvény-derivált). A végeredmény: \frac{\pi^2}{4}.

Előzmény: [1203] lorantfy, 2006-03-19 16:00:42

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]    [94]    [95]    [96]    [97]    [98]    [99]    [100]    [101]    [102]    [103]    [104]    [105]    [106]    [107]    [108]    [109]    [110]    [111]    [112]    [113]    [114]    [115]    [116]    [117]    [118]    [119]    [120]    [121]    [122]    [123]    [124]    [125]    [126]    [127]    [128]    [129]    [130]    [131]    [132]    [133]    [134]    [135]    [136]    [137]    [138]    [139]    [140]    [141]    [142]    [143]    [144]    [145]    [146]    [147]    [148]    [149]    [150]    [151]    [152]    [153]    [154]    [155]    [156]    [157]    [158]    [159]    [160]    [161]    [162]    [163]    [164]    [165]    [166]    [167]    [168]    [169]    [170]    [171]    [172]    [173]    [174]    [175]    [176]    [177]    [178]    [179]    [180]    [181]    [182]    [183]    [184]    [185]    [186]    [187]    [188]    [189]    [190]    [191]    [192]    [193]    [194]    [195]    [196]    [197]    [198]    [199]    [200]    [201]    [202]    [203]    [204]    [205]    [206]    [207]    [208]    [209]    [210]    [211]    [212]    [213]    [214]    [215]    [216]    [217]    [218]    [219]    [220]    [221]    [222]    [223]    [224]    [225]    [226]    [227]    [228]    [229]    [230]    [231]    [232]    [233]    [234]    [235]    [236]    [237]    [238]    [239]    [240]    [241]    [242]    [243]    [244]    [245]    [246]    [247]    [248]    [249]    [250]    [251]    [252]    [253]    [254]    [255]    [256]    [257]    [258]    [259]    [260]    [261]    [262]    [263]    [264]    [265]    [266]    [267]    [268]    [269]    [270]    [271]    [272]    [273]    [274]    [275]    [276]    [277]    [278]    [279]    [280]    [281]    [282]    [283]    [284]    [285]    [286]    [287]    [288]    [289]    [290]    [291]    [292]    [293]    [294]    [295]    [296]    [297]    [298]    [299]    [300]    [301]    [302]    [303]    [304]    [305]    [306]    [307]    [308]    [309]    [310]    [311]    [312]    [313]    [314]    [315]    [316]    [317]    [318]    [319]    [320]    [321]    [322]    [323]    [324]    [325]    [326]    [327]    [328]    [329]    [330]    [331]    [332]    [333]    [334]    [335]    [336]    [337]    [338]    [339]    [340]    [341]    [342]    [343]    [344]    [345]    [346]    [347]    [348]    [349]    [350]    [351]    [352]    [353]    [354]    [355]    [356]    [357]    [358]    [359]    [360]    [361]    [362]    [363]    [364]    [365]    [366]    [367]    [368]    [369]    [370]    [371]    [372]    [373]    [374]    [375]    [376]    [377]    [378]    [379]    [380]    [381]    [382]    [383]    [384]    [385]    [386]    [387]    [388]    [389]    [390]    [391]    [392]    [393]    [394]    [395]    [396]    [397]    [398]    [399]    [400]    [401]    [402]