Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?

Fórum: Valaki mondja meg!

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]  

Szeretnél hozzászólni? Jelentkezz be.
[460] hegeduscs2008-04-13 13:47:19

Köszi szépen...

[459] Doom2008-04-13 11:59:12

a1=11, a2=13, an+2=an+1+ "an számjegyeinek összege". Például: 15 = 13+(1+1), 35 = 25+(1+9). Így a sor folytatása: ... 35, 42, 50, 56, 61 stb.

Előzmény: [458] hegeduscs, 2008-04-13 11:52:16
[458] hegeduscs2008-04-13 11:52:16

Van egy 5-es feladatom: Van egy számsorozatunk: 11,13,15,19,25,35,42 A)Mi a kapcsolat a számok között? B)Folytasd a sort! Üdv, Csabi

[457] Valvehead2008-04-13 09:51:33

Lehet, hogy tényleg ez a sor a megoldás. Köszönöm szépen. Ezek szerint nem csak én útáltam a "hülye szabályú" kitalálós sorozatokat? Azért volt érdekes ez a kérdés, mert az összes többi feladat nem ütötte meg a versenyszínvonalat.

Előzmény: [456] Róbert Gida, 2008-04-13 02:37:58
[456] Róbert Gida2008-04-13 02:37:58

Szerintem nézd meg a belinkelt sorozatot, tizedik eleme éppen 2. Valószínű, hogy erre a sorozatra gondoltak, annyira nem elvetemült (bár szinte lehetetlen kitalálni), a sorszáma is roppant alacsony (2963), ez azt jelenti, hogy ez a Sloane sorozatos könyvében is megjelent.

Katonaságnál az alkalmassági teszt (vagy hogyhívják?) volt ilyen, matematika rész csak ilyen *feladatokból* állt egy oldalon minden sorban a megkezdett sorozatot kellett folytatni. Igazolásom nem lévén 3-szor is volt szerencsém kitölteni ugyanazt a tesztet, azt hiszem a végén már majd 100 százalékra, nyelvtani-fizikai rész már nem ment ilyen jól. Bár gondoltam arra is, hogy szándékosan hülyének tettetem magam és elrontom, simán ment volna. Szerencsére megszüntették a sorkatonaságot mire ténylegesen behívtak volna.....

Előzmény: [454] Valvehead, 2008-04-12 23:43:06
[455] Káli gúla2008-04-12 23:45:04

Hasonló, talán még elvetemültebb a 6,2,5,5,4,5,6,... sorozat, internet nélkül elég reménytelen folytatni. Szintén megtalálható ugyanott: A010371.

Előzmény: [453] Róbert Gida, 2008-04-12 15:31:00
[454] Valvehead2008-04-12 23:43:06

Na ja, ennyit sem tudok begépelni.. Három válaszlehetőség is van:

a) 2 b) 5 c)7

Jó, attól hogy egy ismeretlen fokszámú polinomnak megadunk véges számú pontját nem lesz határozott. Igazad van, arra gondoltam, hogy legalább 3-adfkú. Én nem tudom megoldani a feladatot, ezért kérek segítséget.

Előzmény: [453] Róbert Gida, 2008-04-12 15:31:00
[453] Róbert Gida2008-04-12 15:31:00

"Hatodik osztályos versenyfeladat"

A zárt osztályon?

7-ed fokú polinomot illesztve az első 7 elemre és tetszőleges tizedikre bármilyen komplex szám lehet a tizedik tag, ezért sem értelmes a kérdés.

Neil Sloane több, mint 100,000 sorozatát tartalmazó adatbázisában csak egy sorozat kezdődik így: A002963

Előzmény: [452] Valvehead, 2008-04-12 15:19:51
[452] Valvehead2008-04-12 15:19:51

Első hozzászólás alkalmából üdvözlöm a fórumot! Hatodik osztályos versenyfeladattal nem boldogulok, hátha valaki tud segíteni... Melyik szám lehet a sorozat 10. eleme?

1; 2; 3; 3; 2; 3; 4; ..; ..; ..

Persze, explicit alakban biztos harmadfokú (3db 3-as) meg gondolom van rá egy primitív rekurziós képlet, amitől fogom majd a fejem...

Aki foglalkozik vele, annak előre is köszönöm szépen!

[451] Róbert Gida2008-04-11 17:34:09

Egyébként, ha van otthon véletlenül egy kvantumszámítógéped, és tudod *programozni*, akkor szerintem ne habozz és Schor algoritmusát *programozzad* le a kvantummicsodádon, az polinom időben kiköp egy y megoldást

Előzmény: [450] Róbert Gida, 2008-04-11 17:23:32
[450] Róbert Gida2008-04-11 17:23:32

Különböző dolgokról beszélsz, páratlan n esetén az, hogy nincs más megoldás csak a triviális y=1, illetve y=n ekvivalens azzal, hogy n-nek nincs más pozitív osztója, azaz n az prím (n>1 fel volt téve). Erre pedig van már gyors egzakt polinomiális teszt, az "AKS test", keress rá az interneten, persze vannak véletlen (nem egzakt) módszerek is. Míg legalább egy y megtalálására nincs gyors módszer, hiszen ez a szám faktorizálásával polinomiálisan ekvivalens probléma, amiről nem tudjuk, hogy gyorsan meg lehet-e csinálni.

Előzmény: [448] csewe, 2008-04-11 15:02:30
[449] Sirpi2008-04-11 15:41:50

De ez nem segít a szűkítésben, ahogy már írtam...

Megfelelő x, y pár megtalálása egyenértékű azzal, hogy megtalálod azt az y-t, ami osztja n-et.

Előzmény: [448] csewe, 2008-04-11 15:02:30
[448] csewe2008-04-11 15:02:30

szia Sirpi

addig én is eljutottam,hogy y = 1 , de mint írtam 1 < y

mert igazából az érdekelne hogy van e másik felbontása n -nek mert sok esetben van mégha nem is kapom meg a másik felbontást de el kellene döntenem , hogy létezik e.

egyébként ezek az én agyam szüleményei , a progimhoz kellene. azért ,hogy ne keljen minden értéket végig zongorázni.

Előzmény: [447] Sirpi, 2008-04-11 10:41:55
[446] epsilon2008-04-11 10:56:21

OK nadorp, kösz, valóban elszámoltam, mert Nekem a tg a 2n-en lett, mert egy sin a négyzeten "bennmaradt" :-( Túl csábító volt az a változócsere, és csodálkoztam is, hogy miért nem jön össze! Üdv: epsilon

Előzmény: [440] nadorp, 2008-04-09 16:14:07
[447] Sirpi2008-04-11 10:41:55

Figyi, minden feladatod arra megy ki, hogy n-et két szám szorzatára kell bontani, és ahogy már írtam korábban, az sokjegyű számokra nehéz. Itt is a felbontás a lényeg, hiszen odáig az átalakítások teljesen triviálisak:

n = x^2 - (x-y)^2 = \left( x + (x-y) \right) \cdot \left( x - (x-y) \right) = (2x-y) \cdot y

És ha most n páratlan (amit fel lehet tenni, mert ha páros, akkor osztjuk 2-vel, és n/2-et próbáljuk felbontani), akkor annak minden kéttényezős felbontására egyértelműen fogunk kapni egy páratlan y-t és egy egész x-et (n-nek minden y osztójához x=(y+n/y)/2).

Egyébként ennek könnyű megadni egy triviális megoldását, ha n páratlan (helyettesítsd be): x=(n+1)/2, y=1

Amúgy honnan szeded ezeket a felbontásokat?

Előzmény: [445] csewe, 2008-04-11 10:03:14
[445] csewe2008-04-11 10:03:14

sziasztok

ismét kérnék egy levezetést

n = x négyzet - (x - y) a négyzeten

1 < y < n-1 valószínűleg páratlan

0 <= x pozitív egész

x -et és y -ont keresem

köszi

[444] Róbert Gida2008-04-10 22:55:10

Érdekes kérdés. Jelölje f(n) az osztók maximális számát (k\le n!-ig minden egész előáll n!-nak legfeljebb f(n) darab különböző (pozitív) osztójának összegeként). Dinamikus programozással kiszámítható ez a sorozat kis n-ekre:

f(1)=1,f(2)=1,f(3)=2,f(4)=3,f(5)=4,f(6)=5,f(7)=5,f(8)=6,f(9)=7,f(10)=7,f(11)=7

Nagyobb n-re már nincs elég memóriája a gépemnek. Egyszerű program O(n!) memóriát igényel.

Hasonlóan az eredeti feladat bizonyításához így minden n\ge11-re f(n)\len-4 is teljesül! Sőt szerintem nehéz számelméleti sejtésekkel rögzített c>0-ra f(n)<c*n is teljesül, ha n elég nagy.

Előzmény: [442] S.Ákos, 2008-04-09 21:37:21
[443] Lóczi Lajos2008-04-10 11:10:51

Pl. ha az integrandus mondjuk folytonos és a kiintegrált résznek van limesze (abban a pontban, ahol azt az improprius integrál megköveteli).

Előzmény: [441] Gyöngyő, 2008-04-09 18:16:40
[442] S.Ákos2008-04-09 21:37:21

Sziasztok!

A B.4055-ös feladatnál (Bizonyítsuk be, hogy minden n!-nál nem nagyobb pozitív egész szám felírható az n! legfeljebb n darab különböző osztójának összegeként.) egész könnyen adódik, hogy n-1 tag is elég n>1 esetén. a kérdés az lenne, hogy ennyi mindig kell-e, vagy ez is csökkenthető tovább, ha n nő, és ha igen, melyik az a függvény, ami megadja a tagok minimális számát?

[441] Gyöngyő2008-04-09 18:16:40

Sziasztok!

Lenne egy olyan kérdésem,hogy milyen esetben lehet parciális integrálást alkalmazni impropius integrál kiszámitására?

Köszike:

Zsolt

[440] nadorp2008-04-09 16:14:07

Az is jó, de nem kell rekurzió, ui. valami ilyet kellett, hogy kapjál az integrandusra: \frac1{\cos^2t}(\tan t)^{2n-1}, ez pedig g^k(x)g'(x)=\frac 1{k+1}\cdot \big(g^{k+1}(x)\big)' alakú

Előzmény: [438] epsilon, 2008-04-09 15:48:31
[438] epsilon2008-04-09 15:48:31

Köszi nadorp, mindjárt nem is merek szólni, mert ez valóban átvert, és nem is modhatni kemény diónak, én az x=a×cos2t változócsrét alkalmaztam, és tangenshatványnak az integrálja lett, amit csak rekurziósan bonyolítottam :-(

[437] nadorp2008-04-09 15:15:16

Legyen \frac{a-x}{a+x}=y. Ekkor az integrál erre "fajul":

\int_0^1\frac{y^{n-1}}{2a}dy

Előzmény: [435] epsilon, 2008-04-09 14:08:01
[436] epsilon2008-04-09 14:25:40

A 434. hsz-ban mindenütt (0,1) helyett [0,1] a helyes. Bocs az elírásért!

[435] epsilon2008-04-09 14:08:01

Annak örömére, hogy nadorp ilyen szép elemi megoldást adott, fe merészkedek tenni még egy feladatot, szimpatikus, de nem ugrik be :-( Igazolandó, hogy:

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]