Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?
A LapInfo

Impresszum

Szerk

KÖZÉPISKOLAI MATEMATIKAI ÉS FIZIKAI LAPOK

Alapította: Arany Dániel 1894-ben

Főszerkesztő: Korándi József   
Fizikus szerkesztő: Vankó Péter
Műszaki szerkesztő: Fried Katalin
Kiadja: MATFUND Alapítvány
Alapítványi képviselő: Kós Rita   
Felelős kiadó: Patkós Balázs
Borító: Burghardt Zsuzsa
Nyomda: OOK-PRESS Kft.
Felelős vezető: Szathmáry Attila
INDEX: 25  450  ISSN 1215-9247
Matematika szerkesztőbizottság:
tiszteletbeli elnöke: Hermann Péter
vezetője: Kós Géza   
tagjai: Bán-Szabó Áron, Bíró Bálint, Czett Mátyás, Gyenes Zoltán, Hujter Bálint, Kiss Géza, Kozma Katalin Abigél, Magyar Eszter, Németh Márton, Pach Péter Pál, Paulovics Zoltán, Ratkó Éva, Simon László Bence, Sztranyák Attila, Ujházy Márton, Vígh Viktor
Fizika szerkesztőbizottság:
vezetője: Széchenyi Gábor
tagjai: Baranyai Klára, Gnädig Péter, Honyek Gyula, Olosz Balázs, Szász Krisztián, Vigh Máté, Vladár Károly, Woynarovich Ferenc
Informatika szerkesztőbizottság:
vezetője: Schmieder László
tagjai: Lóczi Lajos, Siegler Gábor, Tóth Tamás
Fordítók: Gyenes Zoltán, Tasnádi Anikó
Nyelvi korrektor: Andics Ágnes
Javítás koordinálása: Csobánka Petra
Szerkesztőségi titkár: Ondiné Szabó Sára   
A szerkesztőség címe: 1117 Budapest, Pázmány Péter sétány 1/C III. emelet 3.405.
Telefon: +36 20 320 1143
E-mail:
A LapLegfrissebb szám

A KöMaL 2026. februári száma

A LapMegrendelés

A KöMaL megrendelése

A KöMaL egy példányának ára 2025. szeptembertől 1600 Ft, előfizetése 1 évre 12500 Ft – BJMT tagoknak 12000 Ft.

PontversenyVersenykiírás

Versenykiírás a KöMaL 2025–2026. évi pontversenyeire

Azok is figyelmesen olvassák el a Versenykiírást, akik tavaly már részt vettek versenyünkben.

Idén is matematikából, fizikából és informatikából indítunk versenyeket. Egyénileg, illetve csapatban is lehet versenyezni, a versenyek 9 hónapon keresztül, 2025. szeptemberétől 2026. június elejéig tartanak. Minden hónapban új feladatokat tűzünk ki, és a megoldásokat a következő hónap elejéig küldheted be. A verseny végeredményét a 2026. szeptemberi számunkban hirdetjük ki. A díjakat jövő ősszel, a KöMaL Ifjúsági Ankéton adjuk át.

A LapLegfrissebb szám

A KöMaL 2026. januári száma

A LapInfo

Elérhetőségeink

KöMaL szerkesztőség
1117 Budapest, Pázmány Péter sétány 1/C III. emelet 3.405
Telefon (szerkesztőségi iroda): +36 20/320-1143
Telefon (megrendelés, postázás): (36-1)-372-2850

A LapArchívum

A nyomtatott KöMaL archívuma

A Középiskolai Matematikai és Fizikai Lapok évről évre bővülő számú évfolyama – jelenleg 1893–1901-ig és 1965 és 2019 között – többféle szempont szerint kereshető, és a kiválogatott feladatok, cikkek kinyomtathatóak. Az összetett kereséssel igazi kincsestárban kutathatnak ingyenesen az olvasók: lehet keresni cikkekben és feladatokban többek között cím, szöveg, kategória (pl. versenyek), témakör és név alapján.

MatfundTámogatás

Kérjük, támogassa adója 1%-ával a KöMaL-t!

A KöMaL kiadásának, a versenyek teljes lebonyolításának, díjazásának és a díjkiosztóval egybekötött Ifjúsági Ankétok szervezésének költségeit 2007 óta a MATFUND Középiskolai Matematikai és Fizikai Alapítvány fizeti.

Kérjük, személyi jövedelemadója 1%-ának felajánlásával álljon a több, mint 125 éve alapított Középiskolai Matematikai és Fizikai Lapok mellé!

🔒 MatematikaRejtvények, ördöglakatok

Rejtvények, ördöglakatok: Emelt szintű bújócska II.

Legutóbb szeptemberi számunkban foglalkoztunk bújócska típusú ördöglakatokkal. Elkészítésre ajánlottunk olvasóinknak egy pálcás változatot, ahol a ,,szokásos'' trükk nem működik, mivel az átbújtatás után (lásd ábra) a pálca nem fér át a hurkon a zsinór rövidsége miatt. Azonban vegyük észre, hogy ebben az átbújtatott állapotban valójában annyi a célunk, hogy a hurok a dupla zsinór másik oldalára kerüljön. Ezt úgy is elérhetjük, ha a téglatest formájú ,,alapot'' bújtatjuk át a hurkon.

🔒 MatematikaCikk

Tait tételének bizonyítása

A KöMaL 2025 szeptemberi számában (Tait tétele és a 3-reguláris gráfok – a B. 5403. feladat háttere) kimondtuk Tait alábbi tételét.

Tétel (Tait tétele). Legyen \(\displaystyle G\) egy 3-reguláris, hídélmentes, síkbarajzolt gráf. Ekkor \(\displaystyle G\) tartományai \(\displaystyle 4\)-színezhetők akkor és csak akkor, ha élei \(\displaystyle 3\)-színezhetők.

A tételben \(\displaystyle k\)-színezésen olyan színezést értünk, amely \(\displaystyle k\)-féle színt használ, és az egymással szomszédos tartományok (illetve élszínezés esetén az egy csúcsban találkozó élek) mindig különböző színűek.

A szeptemberi számba nem került be a tétel bizonyítása (azzal a céllal, hogy akinek van kedve, gondolkodhasson rajta), ezt most pótoljuk.

MatematikaRejtvények, ördöglakatok

Rejtvények, ördöglakatok: Emelt szintű bújócska I.

Már többször foglalkoztunk a magyarul általában bújócska néven emlegetett játékcsaláddal. (Lásd például a 2023. decemberi és a 2024. decemberi KöMaLokat.) Ezek közös jellemzője, hogy zsinórók kereszteződését kell megszüntetnünk ahhoz, hogy a feladványt megoldjuk.

MatematikaCikk

Tait tétele és a 3-reguláris gráfok – a B. 5403. feladat háttere

A KöMaL 2022 őszi számaiban Tóthmérész Lilla egy alapos cikksorozatot ([1]) közölt a négyszín-sejtés történetéről, benne kiemelten Alfred Kempe 1879-ben közölt bizonyítási kísérletéről, amelyben Heawood 1890-ben találta csak meg a hibát. A cikkben leírtakat érdemes kiegészíteni azzal, hogy 1880-ban egy másik, rendkívül érdekes bizonyítási kísérlet is történt. Egy Peter Guthrie Tait nevű skót matematikus ugyanis a következő szép állítást bizonyította, mindössze 1 évvel Kempe kísérlete után ...

MatematikaRejtvények, ördöglakatok

Rejtvények, ördöglakatok: A Hanoi tornyai feladvány gráfja

A Hanoi tornyai egy olyan feladvány, amelyben három függőleges pálcán van \(\displaystyle n\) db, különböző külső átmérőjű lyukas korong [2]. A hagyományos kiindulási állapotban a bal szélső pálcán van az összes korong, fentről lefelé növekvő méretben, a célállapot pedig ugyanez a korongpiramis, csak a jobb szélső pálcán. Két egyszerű szabályt kell betartani: minden lépésben valamelyik pálca legfelső korongját tehetjük egy másik pálca tetejére, továbbá semelyik korongot sem szabad nála kisebb korongra tenni. Igazolható, hogy a szükséges lépésszám \(\displaystyle 2^n - 1\), azaz minden egyes korong hozzáadásával lényegében megduplázódik.