Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?
FizikaMintamegoldás

A P. 5660. fizika feladat megoldása

Szerk

P. 5660. Egy pontszerűnek tekinthető, \(\displaystyle m\) tömegű, átfúrt golyó az ábra szerint egy \(\displaystyle R\) sugarú, vízszintes átmérőjű, függőleges síkú, félkör alakú, rögzített, merev drótra van fűzve, amelyen súrlódásmentesen csúszhat. A golyóhoz egy vékony fonál van kötve, amely a drót \(\displaystyle C\) végén lévő, kicsiny csigán van átvetve. A fonál másik végéhez egy ugyancsak \(\displaystyle m\) tömegű nehezék van erősítve. A bal oldali golyót a fonál vízszintes helyzetéből lökésmentesen elengedjük, amikor a fonál \(\displaystyle \alpha=0^\circ\)-os szöget zár be a vízszintes átmérővel.

a) Mekkora sebességgel mozognak a testek, amikor a bal oldali test a drótpálya legalsó pontján halad át?

b) Mekkora a testek gyorsulása ebben a pillanatban?

(6 pont)

Közli: Zsigri Ferenc, Budapest

Megoldás. a) A dróton mozgó golyó adatait jelölje 1-es, a fonálon függő testét 2-es index. A mechanikai energia megmaradását felírva a kezdeti és a vizsgált állapot között:

\(\displaystyle mgR+mg(2-\sqrt{2})R=\frac{1}{2}mv_1^2+\frac{1}{2}mv_2^2. \)

A kényszerfeltétel (a fonál nyújthatatlansága miatt) a vizsgált pillanatban:

\(\displaystyle v_2=\frac{v_1}{\sqrt{2}}, \)

ezt beírva az energiaegyenletbe és rendezve:

$$\begin{gather*} v_1=\sqrt{\frac{4(3-\sqrt{2})}{3}gR},\\ v_2=\sqrt{\frac{2(3-\sqrt{2})}{3}gR}. \end{gather*}$$

b) A testre ható erők az ábrán láthatók.

A 2-es test mozgásegyenlete:

\(\displaystyle (1) \)\(\displaystyle ma_2=mg-K.\)

Ha az 1-es test mozgását az \(\displaystyle O\) pont körül vizsgáljuk (amelytől a távolsága időben nem változik), akkor a centripetális gyorsulása:

\(\displaystyle a_{\mathrm{cp},O}=\frac{v_1^2}{R}. \)

Az erre felírt mozgásegyenlet:

\(\displaystyle (2) \)\(\displaystyle m\frac{v_1^2}{R}=\frac{K}{\sqrt2}+N-mg.\)

Ha a test mozgását a \(\displaystyle C\) ponthoz viszonyítva nézzük, akkor a \(\displaystyle C\) pont irányába egyrészt (a fonál nyújthatatlansága miatt) \(\displaystyle a_2\) gyorsulással mozog, másrészt a fonál elfordulása miatt centripetális gyorsulása is van:

\(\displaystyle a_{\mathrm{cp},C}=\frac{\left(\frac{v_1}{\sqrt{2}}\right)^2}{\sqrt{2}R}=\frac{v_1^2}{2\sqrt{2}R}. \)

Ezt felhasználva a mozgásegyenlet:

\(\displaystyle (3) \)\(\displaystyle m\left(a_2+\frac{v_1^2}{2\sqrt{2}R}\right)=K+\frac{N}{\sqrt{2}}-\frac{mg}{\sqrt2{}}.\)

Az (1) egyenletet beírva (3)-ba, majd abból (2) \(\displaystyle \sqrt{2}\)-ed részét kivonva, és rendezve:

\(\displaystyle K=\frac{2}{3}mg-\frac{mv_1^2}{3\sqrt{2}R}, \)

majd az a) részből \(\displaystyle v_1\) kifejezését behelyettesítve:

\(\displaystyle K=\frac{10-6\sqrt{2}}{9}mg. \)

Az 1-es test gyorsulásának két komponense van. A tangenciális gyorsulás a mozgásegyenlet alapján:

\(\displaystyle a_{\mathrm{t}}=\frac{K}{\sqrt{2}m}=\frac{5\sqrt{2}-6}{9}g\approx 0{,}119~g, \)

a centripetális gyorsulása pedig

\(\displaystyle a_{\mathrm{cp},O}=\frac{v_1^2}{R}=\frac{4(3-\sqrt{2})}{3}g\approx 2{,}11~g. \)

Ezekből az 1-es test keresett gyorsulása:

\(\displaystyle a_1=\sqrt{a_{\mathrm{t}}^2+a_{\mathrm{cp},O}^2}\approx 2{,}12~g. \)

A 2-es test gyorsulása pedig (1) alapján:

\(\displaystyle a_2=g-\frac{K}{m}=\frac{6\sqrt{2}-1}{9}g\approx 0{,}832~g. \)

Ujvári Sarolta (Budapesti Fazekas M. Gyak. Ált. Isk. és Gimn., 11. évf.) dolgozata alapján

15 dolgozat érkezett. Helyes 3 megoldás. Hiányos (1–4 pont) 11, hibás 1 dolgozat.

A LapLegfrissebb szám

A KöMaL 2026. januári száma

A LapLegfrissebb szám

A KöMaL 2025. novemberi száma

A LapLegfrissebb szám

A KöMaL 2025. szeptemberi száma

A LapLegfrissebb szám

A KöMaL 2026. februári száma

A LapLegfrissebb szám

A KöMaL 2025. decemberi száma

A LapLegfrissebb szám

A KöMaL 2025. októberi száma

FizikaMintamegoldás

A P. 5670. fizika feladat megoldása

P. 5670. Két, egymást merőlegesen keresztező úton egy-egy motoros halad. Az egyik sebessége \(\displaystyle v_1\), a másiké \(\displaystyle v_2\), és az egymástól való legkisebb távolságuk \(\displaystyle d_0\). Milyen távolságra vannak ekkor a kereszteződéstől?

Az egyszerűség kedvéért mindkét járművet tekintsük pontszerűnek.

Közli: Woynarovich Ferenc, Budapest

MatfundTámogatás

Kérjük, támogassa adója 1%-ával a KöMaL-t!

A KöMaL kiadásának, a versenyek teljes lebonyolításának, díjazásának és a díjkiosztóval egybekötött Ifjúsági Ankétok szervezésének költségeit 2007 óta a MATFUND Középiskolai Matematikai és Fizikai Alapítvány fizeti.

Kérjük, személyi jövedelemadója 1%-ának felajánlásával álljon a több, mint 125 éve alapított Középiskolai Matematikai és Fizikai Lapok mellé!

FizikaMintamegoldás

Az M. 444. mérési feladat megoldása

M. 444. Határozzuk meg egy AA-s ceruzaelem szimmetriatengelyére és egy arra merőleges, a tömegközépponton áthaladó tengelyre vett tehetetlenségi nyomatékait!

Közli: Széchenyi Gábor, Budapest

Megoldás. Az elem tömege (konyhai mérleggel mérve): \(\displaystyle m=24~\mathrm{g}\), hossza \(\displaystyle L=48~\mathrm{mm}\), átmérője (digitális tolómérővel mérve): \(\displaystyle d=14{,}2~\mathrm{mm}\), amiből a sugara: \(\displaystyle {r=d/2=7{,}1~\mathrm{mm}}\). A mérés során a szimmetriatengelyre vonatkozó \(\displaystyle \Theta_\parallel\), illetve az arra merőleges tengelyre vonatkozó \(\displaystyle \Theta_\perp\) tehetetlenségi nyomatékot egy-egy egymástól eltérő módszerrel mérjük meg.

FizikaMintamegoldás

A G. 900. fizika gyakorlat megoldása

G. 900. Megválasztható-e az ábrán látható ohmos ellenállások (nullától különböző) nagysága úgy, hogy az eredő ellenállás az a) és b) esetekben egyenlő legyen?

de Châtel Péter (1940–2023) feladata nyomán

FizikaMintamegoldás

A P. 5676. fizika feladat megoldása

P. 5676. Az ábrán látható kapcsolási rajz szerint összeállított áramkörben szereplő feszültségforrás elektromotoros ereje \(\displaystyle 20~\mathrm{V}\), az ellenállások \(\displaystyle R_1=50~\Omega\), illetve \(\displaystyle R_2=150~\Omega\) nagyságúak, a kondenzátor \(\displaystyle 20~\mu\mathrm{F}\) kapacitású. Kezdetben a K kapcsoló zárva van.

a) Mekkora a kondenzátor töltése a kapcsoló zárt állása esetén?

b) A kapcsoló nyitását követően kialakuló állandósult állapot eléréséig mennyivel változik meg a kondenzátor energiája, és mennyi hő fejlődik az \(\displaystyle R_1\) ellenálláson?

A feszültségforrás belső ellenállása elhanyagolható.

Tornyai Sándor fizikaverseny, Hódmezővásárhely

PontversenyVersenykiírás

Versenykiírás a KöMaL 2025–2026. évi pontversenyeire

Azok is figyelmesen olvassák el a Versenykiírást, akik tavaly már részt vettek versenyünkben.

Idén is matematikából, fizikából és informatikából indítunk versenyeket. Egyénileg, illetve csapatban is lehet versenyezni, a versenyek 9 hónapon keresztül, 2025. szeptemberétől 2026. június elejéig tartanak. Minden hónapban új feladatokat tűzünk ki, és a megoldásokat a következő hónap elejéig küldheted be. A verseny végeredményét a 2026. szeptemberi számunkban hirdetjük ki. A díjakat jövő ősszel, a KöMaL Ifjúsági Ankéton adjuk át.