Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?
A Lap — Legfrissebb szám

A KöMaL 2025. decemberi száma

Szerk

  

  

A Lap — Legfrissebb szám

A KöMaL 2026. januári száma

Beszámoló — Közélet

Beszámoló a 64. Rátz László Vándorgyűlésről

Idén Miskolc vendégül a matematikatanárok csapatát a Rátz László Vándorgyűlés keretei között. Négy szekcióban zajlottak a szemináriumok és az előadások, ezen kívül átadták a Bolyai János Matematikai Társulat Beke Manó Emlékdíjait és a Reményi díjakat az országos matematikaversenyeken kiváló eredményt elért tanulók tanárainak.

Matematika — Érettségi gyakorló

Megoldásvázlatok a 2025/7. szám matematika gyakorló feladatsorához

1. Oldja meg a valós számok halmazán az alábbi egyenleteket.

a) \(\displaystyle \dfrac{x}{x-1}+\dfrac{2x+1}{x+1}=\dfrac{3x+5}{x^{2}-1}\), (5 pont)

b) \(\displaystyle \cos 2x+2\sin x+3=0\). (5 pont)

Matematika — Rejtvények, ördöglakatok

Rejtvények, ördöglakatok: A Hanoi tornyai feladvány gráfja

A Hanoi tornyai egy olyan feladvány, amelyben három függőleges pálcán van \(\displaystyle n\) db, különböző külső átmérőjű lyukas korong [2]. A hagyományos kiindulási állapotban a bal szélső pálcán van az összes korong, fentről lefelé növekvő méretben, a célállapot pedig ugyanez a korongpiramis, csak a jobb szélső pálcán. Két egyszerű szabályt kell betartani: minden lépésben valamelyik pálca legfelső korongját tehetjük egy másik pálca tetejére, továbbá semelyik korongot sem szabad nála kisebb korongra tenni. Igazolható, hogy a szükséges lépésszám \(\displaystyle 2^n - 1\), azaz minden egyes korong hozzáadásával lényegében megduplázódik.

Matematika — Kicsek a KöMaL múltjából

Kincsek a KöMaL múltjából

Ezúttal részletesebben egy 1928. januárjában kitűzött feladatról és annak az ugyanazon év márciusi számában megjelent megoldásáról, illetve további, szintén ehhez a témához kapcsolható feladatokról lesz szó. Mint később látjuk, ezek mindegyike szorosan kapcsolódik az e számban megoldott B. 5440. feladathoz.

Fizika — Cikk

Egy egyszerű egyenletmegoldó eljárás

Kevés az olyan egyenlettípus, amely zárt alakban megoldható, a legtöbb esetben valamilyen numerikus megoldáshoz kell folyamodnunk. Mindig lehetőségünk van a próbálgatásra, amit ügyesen végrehajtva megbízható eredményre juthatunk, de bizonyos esetekben a megoldás megkeresésére szisztematikus, könnyen automatizálható eljárás is a rendelkezésünkre áll. Az alábbiakban egy ilyet mutatunk be. Ez az

\(\displaystyle (1) \)\(\displaystyle x=f(x)\)

típusú egyenletek esetében alkalmazható, és az \(\displaystyle f(x)\) függvények egy széles osztályában eredményes. A módszer lényege, hogy az

\(\displaystyle x_{n+1}=f(x_n) \)

képzési szabály segítségével egy sorozatot generálunk.

Beszámoló — Eötvös-verseny

Beszámoló a 2025. évi Eötvös-versenyről

Az Eötvös Loránd Fizikai Társulat 2025. évi Eötvös-versenye október 17-én délután 3 órai kezdettel tíz magyarországi helyszínen került megrendezésre. Az ünnepélyes eredményhirdetésre és díjkiosztásra 2025. november 28-án délután került sor az ELTE TTK Eötvös termében. Megemlékeztünk az 50 és 25 évvel ezelőtti Eötvös-versenyről, ismertettük az akkori feladatokat és a győztesek nevét. Az 50 évvel ezelőtti díjazottak közül Virosztek Attila, a 25 évvel ezelőttiek közül Pozsgay Balázs volt jelen – ők röviden beszéltek a versennyel kapcsolatos emlékeikről és a pályafutásukról. Az 50 évvel ezelőtti II. díjas Zimányi Gergely videóüdvözletet, a 25 évvel ezelőtti I. díjas Buruzs Ádám pedig szöveges üzenetet küldött a jelenlévőknek.

Beszámoló — Rátz Tanár Úr életműdíj

Rátz Tanár úr életműdíj 2025

25. alkalommal adták át a Rátz Tanár úr életműdíjakat összesen nyolc kiváló tanár részére:

Kántor Sándorné, Dr. Pintér Klára, Ábrám László, Horváth Norbert, Karasz Gyöngyi, Nagy István, Bódis Bertalan, Mándics Dezső.

A kitüntetettek részletes bemutatása és az évente megújuló felhívás megtalálható a Rátz Tanár Úr Életműdíj hivatalos honlapján: https://www.ratztanarurdij.hu/

Fizika — Mintamegoldás

Az M. 443. mérési feladat megoldása

M. 443. Mobiltelefon fényérzékelőjét használva mutassuk meg, hogy a fényintenzitás inverz négyzetesen függ egy pontszerű fényforrástól mért távolságtól! Hogyan válasszuk a kísérleti körülményeket ahhoz, hogy minél pontosabban tudjuk igazolni ezt az összefüggést?

Közli: Vadász Gergely, Solymár

Matematika — IMO

A 66. Nemzetközi Matematikai Diákolimpia feladatainak megoldása II.

A hagyományoknak megfelelően közöljük a Nemzetközi Matematikai Diákolimpia feladatainak megoldásait. A megoldások leírására idén is a magyar csapat tagjait kértük meg.

A második napi megoldások Holló Martin, Szakács Ábel és Czanik Pál munkái.