Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?

Fórum: Valaki mondja meg!

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]  

Szeretnél hozzászólni? Jelentkezz be.
[2183] Bátki Zsolt2018-06-30 15:55:57

Mint tudjuk a természetes számok reciprokának az összege végtelen (divergens a sor) A prímszámokra is végtelen: azaz sum (1/p) nagyon soknál is több. Sum (1/i*i) Négyzetszámok reciprok összege (pi*pi/6, Euler alapján) véges.

De mennyi sum (1/(p*p)) azaz:prímek négyzetének reciprok összege mennyi? nem találtam erre az interneten. Próbáltam számolni de nem sokra jutottam a sejtésben, hogy mennyi. Írok rá programot, de az nem hozza ki a formulát, ha van egyáltalán. Köszi a segítségetek. 1/(2*2)+1/(3*3)+1/(5*5)+1/(7*7)+1/(11*11)+1/(13*13)+1/(17*17) =0.439...

[2184] Lóczi Lajos2018-07-01 09:45:07

https://mathoverflow.net/questions/53443/sum-of-the-reciprocal-of-the-primes-squared

Előzmény: [2183] Bátki Zsolt, 2018-06-30 15:55:57
[2185] marcius82018-07-02 10:55:54

Végül is a primnégyzetek reciprokösszege csak egy másik végtelen összeggel lett felírva, amelynek értéke el lett nevezve. Ez nagyjából annak a beismerése, hogy igazából semmit sem tudunk erről az összegről. De a [2183] kérdés nagyon jó!!!! A [2184] válasz meg érdekes. A [2183] kérdés annyira tetszett nekem, hogy ezzel kapcsolatban nekem is eszembe jutottak a következő kérdések:

Mit tudunk a \(\displaystyle 4k+1\) alakú pozitív prímek reciprokösszegéről? Mit tudunk a \(\displaystyle 4k-1\) alakú pozitív prímek reciprokösszegéről?

Mit tudunk a \(\displaystyle 6k+1\) alakú pozitív prímek reciprokösszegéről? Mit tudunk a \(\displaystyle 6k-1\) alakú pozitív prímek reciprokösszegéről?

Előzmény: [2184] Lóczi Lajos, 2018-07-01 09:45:07
[2186] marcius82018-07-02 10:59:06

Köszi!!! Azt elfelejtettem írni, hogy csak véges sok szabályos háromszögre lehet bontani a szabályos háromszöget.

Előzmény: [2181] Erben Péter, 2018-06-30 11:08:13
[2187] Lóczi Lajos2018-07-02 16:47:18

Ezekhez is érdemes tanulmányozni a linkben szereplő Finch-könyv megadott oldalát.

Előzmény: [2185] marcius8, 2018-07-02 10:55:54
[2188] marcius82018-07-21 16:55:42

\(\displaystyle n\) darab egymással szabályos ötszöget feldarabolunk az átlói mentén. Így keletkezik \(\displaystyle 5n\) darab egyenlő szárú háromszög, melyeknek szögei 36°, 36°, 108°, keletkezik \(\displaystyle 5n\) darab egyenlő szárú háromszög, melyeknek szögei 72°, 72°, 36°, és keletkezik \(\displaystyle n\) darab kisebb, egymással egybevágó szabályos ötszög. Milyen \(\displaystyle n\) esetén rakható össze a keletkezett síkidomokból mindegyiket pontosan egyszer felhasználva egy nagyobb szabályos ötszög?

[2189] marcius82018-10-23 14:57:32

Az könnyen látható, hogy a \(\displaystyle q_1\) és \(\displaystyle q_2\) kvaterniókhoz létezik olyan \(\displaystyle q\) kvaternió, amelyre teljesül, hogy a \(\displaystyle q_1\) kavternió a \(\displaystyle q\) kvaterniónak valamilyen (egész) kitevőjű hatványa, és a \(\displaystyle q_2\) kvaternió a \(\displaystyle q\) kvaterniónak valamilyen (egész) kitevőjű hatványa, akkor \(\displaystyle q_1*q_2=q_2*q_1\) egyenlet teljesül. Igaz-e ennek az állításnak a megfordítása?

[2190] Fálesz Mihály2018-10-23 16:46:38

A kvaternióknak elég nagy kommutatív résztestei vannak, például a komplex számok.

Előzmény: [2189] marcius8, 2018-10-23 14:57:32
[2191] Lóczi Lajos2018-10-23 19:42:01

Ha az "egész" szó mindkétszer ott szerepel, akkor \(\displaystyle q_1=2\) és \(\displaystyle q_2=3\) megfelelő ellenpélda.

Előzmény: [2189] marcius8, 2018-10-23 14:57:32
[2192] marcius82018-10-25 17:16:59

triviális ellenpélda, köszönöm!!!!

Előzmény: [2190] Fálesz Mihály, 2018-10-23 16:46:38
[2193] Jhony2018-11-23 23:35:09

Tisztelt ,,Mindenki" ! - tudom,nagyképűnek hangzik,de akkor is ez az igazság,vagyis - úgy gondolom - szeptember 6-dikán találtam egy matematikai sejtést,amit teljes indukcióval be is tudok bizonyítani - kérdésem : ebben a helyzetben hogyan tovább ? mi lehet , mi legyen a következő lépés ? a kollégáim - van köztük diplomás is - azt javasolták keressem fel az MTA - át és ott kérdezzek rá ? ...,előbb még is úgy gondoltam felteszem a kérdést itt remélve kapok kisegítő ,,használható" válaszokat ... nagyonszépen köszönök minden választ ,segítséget !

[2194] Lóczi Lajos2018-11-24 17:13:53

Látatlanban nehéz tanácsot adni. Minden attól függ, a sejtés mennyire "érdekes". Esetleg magát az állítást beírhatod ide is, hátha néhányan véleményt tudnak róla mondani.

Előzmény: [2193] Jhony, 2018-11-23 23:35:09
[2195] Jhony2018-11-24 21:37:41

Köszönöm szépen a hozzászólást,annyit elárulhatok,hogy a sejtésem,ami,végül is bizonyítva tétel,szóval bizonyítottan igazolja,hogy az ikerprímek sora végtelen - ami ,ha jól tudom,máig nincsen bizonyítva ....

Előzmény: [2194] Lóczi Lajos, 2018-11-24 17:13:53
[2196] Kós Géza2018-11-25 09:33:23

https://www.komal.hu/forum?a=to&tid=8&tc=88#28376

Különösen G. óta sokkal szigorúbban vesszük a fórum védelmét ezen a területen.

Ha valakinek valami egészen bravúros bizonyítása van valamilyen híres sejtésre, publikálja egy tudományos lapban, pl. elküldheti ide vagy ide vagy ide. És ha az illető lap már közlésre elfogadta, örömmel beszámolunk róla.

Előzmény: [2195] Jhony, 2018-11-24 21:37:41
[2197] Jhony2018-11-25 17:06:42

- köszönöm szépen !

Előzmény: [2196] Kós Géza, 2018-11-25 09:33:23
[2198] marcius82018-12-29 07:12:24

Valaki tudna nekem segíteni abban, hogy az \(\displaystyle x\mapsto\bigg(\frac{a^x+b^x+c^x}{3}\bigg)^\frac1x\) függvény szigorúan monoton növekvő az első derivált vizsgálata alapján? Előre is köszönöm a segítséget. Bertalan Zoltán.

[2199] marcius82018-12-29 07:32:42

Annyi, hogy \(\displaystyle a\), \(\displaystyle b\), \(\displaystyle c\) pozitív valós számokat jelentenek.

Előzmény: [2198] marcius8, 2018-12-29 07:12:24
[2200] nadorp2018-12-29 14:34:42

Feltesszük, hogy a,b és c között van két különböző.

Jelölje H(x) a szóban forgó függvényt. Nyilván H(x)>0

Felhasználjuk, hogy ha f(t) és g(t) pozitív függvények,akkor

\(\displaystyle f(t)^{g(t)}=e^{g(t)\ln f(t)}\)

Először tegyük fel, hogy \(\displaystyle x\neq0\). Ekkor

\(\displaystyle H^{'}(x)=\bigg({{\bigg(\frac{a^x+b^x+c^x}3\bigg)}^{\frac1x}}\bigg)^{'}={{\bigg(\frac{a^x+b^x+c^x}3\bigg)}^{\frac1x}}\cdot\frac{\frac3{a^x+b^x+c^x}\frac{a^x\ln a +b^x\ln b+c^x\ln c}3x-\ln{\frac{a^x+b^x+c^x}3}}{x^2}\)

\(\displaystyle H^{'}(x)=\frac{H(x)}{x^2}\bigg(\frac{a^x\ln{a^x}+b^x\ln{b^x}+c^x\ln{c^x}}{a^x+b^x+c^x}-\ln{\frac{a^x+b^x+c^x}3}\bigg)\)

Az \(\displaystyle f(t)=t\ln t\) (t>0) függvény második deriváltja pozitív, azaz a függvény konvex. Ezért tetszőleges \(\displaystyle t_1,t_2,t_3\) pozitív számra

\(\displaystyle \frac{t_1\ln{t_1}+t_2\ln{t_2}+t_3\ln{t_3}}3\geq\frac{t_1+t_2+t_3}3\ln\frac{t_1+t_2+t_3}3\)

Ezt alkalmazva az \(\displaystyle a^x,b^x,c^x\) számokra

\(\displaystyle \frac{a^x\ln{a^x}+b^x\ln{b^x}+c^x\ln{c^x}}{a^x+b^x+c^x}\geq\ln{\frac{a^x+b^x+c^x}3}\)

Ebből azonnal következik,hogy \(\displaystyle H^{'}(x)\geq0\), azaz H(x) monoton növekvő.

De \(\displaystyle x\neq0\) esetén \(\displaystyle H^{'}(x)>0\) is teljesül, hiszen egyenlőség csak a=b=c esetén lehetne, amit most kizártunk, azaz H(x) szigorúan monoton nő.

Egy kis számolással - mondjuk L'Hospital - adódik, hogy H(x) a 0-ban folytonossá tehető ( határértéke \(\displaystyle \root 3\of {abc}\))

A fentiekből következik, hogy H(x) szigorúan monoton nő.

[2201] marcius82018-12-31 14:13:06

Köszönöm a segítséget.

Előzmény: [2200] nadorp, 2018-12-29 14:34:42
[2202] marcius82019-01-09 11:21:50

Esetleg valaki tudja, hogy ha van egy szélsőérték-feladat feltételekkel, akkor a Langrange-multiplikátor módszerrel megtalált lehetséges szélsőértékhelyekről milyen tétel segítségével lehet eldönteni, hogy ezek maximumhelyek vagy minimumhelyek. Vagy a lehetséges szélsőértékhelyek vizsgálata feladatfüggő, minden feladatnál más módszerrel lehet eldönteni a lehetséges szélsőértékhelyekről azt hogy maximumhelyek vagy minimumhelyek? Előre is köszönöm a segítséget. Bertalan Zoltán.

[2203] Fálesz Mihály2019-01-10 18:36:26

Ha szélsőértékhelyeket keresünk csak első deriválttal, akkor igazából kizárásos alapon találjuk meg a szélsőértékhelyeket. Olyan, mint egy klasszikus krimitörténet.

Valahonnan tudjuk hogy bűncselekmény történt: valaki betört az MNB-be és felvette a maximumot. Rajta kívül egy idióta is betört, de ő a minimumot vette fel. Az egyiket börtönbe akarjuk zárni, a másikat diliházba. Mondjuk van egy folytonos \(\displaystyle f:[0,1]\to\mathbb{R}\) függvényünk: ennek a Weierstrass-tétel miatt biztosan van legnagyobb és legkisebb értéke.

A felügyelő kikérdezi az összes gyanúsítottat, vagyis az összes \(\displaystyle [0,1]\)-beli pontot, hogy milyen alibije van. Aki igazolni tudja, hogy ő egy olyan belső pont, ahol \(\displaystyle f\) differenciálható, és a derivált nem nulla, annak alibije van: az ilyen helyeken a függvény lokálisan szig. növekvő/csökkenő, így biztosan nincs szélsőérték sem.

A film utolsó részében összegyűjtjük azokat, akiknek nincs alibije: az intervallum végpontjait, azokat a belső pontokat, ahol a függvény nem differenciálható, vagy éppen differenciálható, de a derivált nulla. Ha szerencsénk van, akkor kevés (véges sok) gyanúsított maradt: ezeket kikérdezzük, vagyis behelyettesítjük a függvénybe. Így kiderül, hogy hol van a maximum és minimum, és kik azok a gyanúsítottak, akik csak rosszkor voltak rossz helyen.

A Lagrange-multiplikátor módszer is ugyanilyen, bizonyos pontoknak alibit biztosít. Annyit állít, hogy azok a pontok, ahol az összes feltétel (egyenlet) teljesül, a feltételek és a célfüggvény folytonosan differenciálható (ehelyett az is elég, ha abban a pontban differenciálhatóak és egy környezeben foytonosak), továbbá a feltételek és a célfüggvény gradiens vektorai lineárisan függetlenek, ott nincs feltételes lokális szélsőértékhely. Ezt persze megfordítva szoktuk használni: ahol feltételes lokális szélsőértékhely van, ott a gradiensvektorok vagy nem is léteznek, vagy lineárisan összefüggőek, tehát valamelyik felírható a többi gradiens egy lineáris kombinációjaként; ebben a lin. kombinációban szereplő együtthatók a "Lagrange-multiplikátorok".

* * *

Téged persze a második derivált szerepe érdekel; sajnos a szinguláris pontokban, ahol feltételek gradiensvektorai lineárisan összefüggőek, ott az egyenletrendszer lokális megoldásai többnyire nem adnak szép felületdarabot. Akár már egyetlen feltétel/egyenlet esetén is, ahol a derivált a nullvektor, ronda lehet a megoldáshalmaz.

A reguláris pontokban, ahol az egyenleteink gradiensvektorai függetlenek, ott az implicitfüggvény-tétel szerint van szép lokális megoldás, felületdarab, és néhány változó egyértelműen meghatározza a többit. Lehetséges egy ügyesen összerakott függvény második deriváltmátrixának definitségét vizsgálni. Ehhez mindenféle parciális derivált mátrixokkal és inverzeikkel kell számolni. Nem szép, de legalább lehetséges...

* * *

A legegyszerűbb eset persze a 2 változó, 1 feltétel. Legyen \(\displaystyle f(x,y)=0\) a feltétel; ezen a "görbén" keressük egy \(\displaystyle g(x,y)\) függvény lokális szélsőértékeit. Tegyük fel, hogy egy \(\displaystyle (a,b)\) rajta van a görbén, tehát \(\displaystyle f(a,b)=0\), és a pont egy környezetében \(\displaystyle f\) és \(\displaystyle g\) is kétszer differenciálható. És azt is tegyük fel, hogy \(\displaystyle (a,b)\) a görbének nem szinguláris pontja, vagyis legalább az egyik parciális derivált nem \(\displaystyle 0\); mondjuk az \(\displaystyle y\)-szerinti. (A parciáls deriváltakat alsó indexekkel fogom jelölni, tehát \(\displaystyle f_2(a,b)\) az \(\displaystyle f\) második változó szerinti parciális deriváltja: \(\displaystyle f_2(a,b)\ne0\).)

Az implicitfüggvény-tétel szerint van \(\displaystyle (a,b)\) körül egy \(\displaystyle A\times B\) téglalap, amelyben görbénk egy függvény grafikonja: van egy egyértelmű \(\displaystyle h:A\to B\) implcit függvény, ami megoldása az \(\displaystyle f(x,h(x))=0\) egyetletnek; ez a \(\displaystyle h(x)\) függvény differenciálható is, és

\(\displaystyle h'(x) = -\frac{f_1(x,h(x))}{f_2(x,h(x))}.\)

A függvényt akár még egyszer differenciálhatjuk, ebből látjuk, hogy a \(\displaystyle h(x)\) függvény kétszer is differenciálható.

Minket az érdekel, hogy a \(\displaystyle G(x)=g(x,h(x))\) függvénynek milyen szélsőértéke lehet az \(\displaystyle a\) pontban.

A számolást úgy lehet szebben leírni, hogy magát az \(\displaystyle f(x,h(x))=0\) azonosságot és a \(\displaystyle G(x)=g(x,h(x))\) függvényt deriváljuk kétszer az \(\displaystyle a\) pontban:

\(\displaystyle f_1(a,b)) + f_2(a,b)\cdot h'(a) = 0 \)

\(\displaystyle f_{11}(a,b)) + 2f_{12}(a,b))\cdot h'(a) + f_{22}(a,b))\cdot h'(a)^2 + f_2(a,b)) \cdot h''(a) = 0 \)

\(\displaystyle G'(a) = g_1(a,b) + g_2(a,b)\cdot h'(a) \)

\(\displaystyle G''(a) = g_{11}(a,b)) + 2g_{12}(a,b)\cdot h'(a) + g_{22}(a,b))\cdot h'(a)^2 + g_2(a,b)) \cdot h''(a) \)

Az első kettőből kifejezhetjük \(\displaystyle h'(a)\) és \(\displaystyle h''(a)\) értékét; mindkét esetben \(\displaystyle f_2(a,b)\)-vel kell osztani, ami nem nulla; a \(\displaystyle G'(a)\) akkor nulla, ha a két gradiens párhuzamos; végül megkapjuk \(\displaystyle G''(a)\) értékét, és megvizsgálhatjuk az előjelét...

Előzmény: [2202] marcius8, 2019-01-09 11:21:50
[2204] titok1112019-01-18 14:07:50

Lenne egy probléma, amit meg kellesz csinálni Excelben is. Ráadásul kiemelt probléma! Adott egy boroshordó. Meg tudom mérni a d és D átmérőket, valamint az l hosszát. (Tegyük fel, hogy szimmetrikus, a gantok párhuzamosak, stb) Olyan számítás kellene, hogy ha lemérem, hogy milyen h magasságig van benne a bor, akkor d,D és l függvényében kiszámolja, hogy a h magassághoz hány liter bor tartozik. (Nyilván ezek normál hordók, tehát fekvő helyzetben vannak, nem gantra állítva, a dugó nyílás pont a legtetején és középen helyezkedik el.) Hogyan kellene ezt megfogni? mert ez olyan kettős integrálnak tűnik alsó hangon. Egyébként elég lenne 1 cm-es lépésekben diszkrét értékek meghatározása is, hiszen általában 100-400 literes hordőkról van szó, így a h értéke max 100 cm körüli lehet. Régen voltak gönci hordóhoz táblázatok, különböző űrmértékek szerint, de már régóta nem találok ilyet. Előre is köszönöm!

[2205] jonas2019-01-21 13:25:25

Használd azt a közelítést, hogy a hordó palástján a pallók olyan parabolák, amiknek a tengelye merőleges a hordó tengelyére és a hordó középpontján megy át, a hordó alja és teteje pedig sík. A parabolikus alakú pallók nem olyan valósághűek, mint a kör alakú pallók (tórusz alakú hordó), de sokkal könnyebb vele pontos számítást végezni, és a legtöbb boroshordónál szerintem megfelelő. A magasság szerinti integrálás belsejében így egyszerű negyedfokú polinom lesz, ezért a pontos értékét is ki tudod számolni a megadott adatokból.

Előzmény: [2204] titok111, 2019-01-18 14:07:50
[2206] titok1112019-01-22 15:13:20

Szia!

És hogyan kellene ezt megfogni az adatok tükrében? Sajna ennyire már nem megy a matek, évek óta nem nagyon foglalkoztam vele... És még annyi, hogy esetleg kisegítő adat lehetne a hordó teljes űrtartalma is.

Előzmény: [2205] jonas, 2019-01-21 13:25:25
[2207] marcius82019-03-02 14:05:17

Van-e olyan poliéder, amelynek minden csúcsából legalább 4 él indul ki, és minden lapjának legalább négy éle (oldala) van?

[2208] marcius82019-03-02 18:04:38

Talán van, például, ha tóruszt négyszögekkel közelítünk.

Előzmény: [2207] marcius8, 2019-03-02 14:05:17
[2209] marcius82019-05-25 14:22:32

Tudja valaki, hogy a kvaterniók halmazában érvényes-e a számelmélet alaptétele? Mindenki segítségét előre is köszönöm. Annyit tudok, hogy itt egy kvaternió akkor egész, ha minden koordinátája egész szám, vagy minden koordinátája feles szám. (feles szám, olyan 2 nevezőjű tört, amelynek számlálója páratlan.) Ami nagyon nehezíti az egész problémát: A kvaterniók körében a kommutativitás hiánya miatt nem tudom vizsgálni az alaptételt az egész számok és a Gauss-egészek közötti számelmélettel analóg módon.

[2210] Lóczi Lajos2019-06-09 01:28:40

https://en.wikipedia.org/wiki/Hurwitz_quaternion

Előzmény: [2209] marcius8, 2019-05-25 14:22:32
[2211] marcius82019-10-23 20:51:38

Egy börtönben 3 rab van. A börtönőrök sorsolás útján eldöntik, hogy melyik 1 rab kap kegyelmet. Minden rab egyforma eséllyel kaphat kegyelmet. A rabok is tudják, hogy közülük 1 rab kegyelmet kapott, de ők nem tudják, hogy ki a szerencsés. Az egyik nagytudású rab az egyik börtönőrt megfűzi valahogy, és így ez a börtönőr elárulja, hogy a másik két rab közül az egyikről, hogy az nem kapott kegyelmet. A börtönőr úgy gondolja, hogy ezzel nagy titkot úgysem árult el, mert a másik két rab közül valamelyik biztosan úgysem kapott kegyelmet. A nagytudású rab meg úgy gondolkozik, hogy most már a 3 rab közül az egyikről biztosan tudja, hogy az nem kapott kegyelmet, tehát így neki már 1/2 az esélye, hogy kegyelmet kapott. A börtönőrnek, vagy a rabnak van igaza?

[2212] Fálesz Mihály2019-10-24 09:52:30

Kecskés játék, már volt: Csak logika, 530. hozzászólás körül.

Előzmény: [2211] marcius8, 2019-10-23 20:51:38
[2213] marcius82019-10-24 18:27:25

első közelítésben én is erre gondoltam (monthy hall paradoxon), csak nem tudom, hogy magántanítványnak hogyan magyarázom el. Köszi a segítséget.

Előzmény: [2212] Fálesz Mihály, 2019-10-24 09:52:30
[2214] HoA2019-10-25 14:26:18

Szerintem, mint azt a "Csak logika" [501] -ben írtam, a legmeggyőzőbb a 100 autós - itt 100 rabos - változat. Vagyis ne 3, hanem 100 rab legyen és a börtönőr az okos rabnak 98 nevet áruljon el, akik nem kaptak kegyelmet. Továbbra is 1/100 az okos rab szabadulásának valószínűsége?

Előzmény: [2213] marcius8, 2019-10-24 18:27:25
[2215] HoA2019-10-25 20:29:47

Bocs, elírtam. Nem 100 autós, hanem 100 ajtós - vagy függönyös - melyek közül csak egy mögött van autó. De a rabokra alkalmazást nem érinti.

Előzmény: [2214] HoA, 2019-10-25 14:26:18
[2216] sereva2019-11-19 22:51:34

Kérlek segítsetek.

Ezek Fibonacci feladatok. http://talaldki.com/wp-content/uploads/2017/11/Fibonacci3.jpg A kérdés:Mi a hiba?

http://talaldki.com/wp-content/uploads/2018/08/Fibonacci6.jpg A kérdés: Hol van, illetve mi az ábrában a hiba?

[2217] SmallPotato2019-11-21 00:24:37

Amennyire látom, a két ábra ugyanaz. "Állítás" nincs bennük, szóval "hiba" se igazán lehet (filozófusok bizonyára pontosítanának ...); mindenesetre amit sugallnak, hogy ugyanis Fibonacci-számok folyamatos sorozatával egyező oldalhosszúságú négyzetekkel hézagmentesen le lehet fedni a sík tetszőlegesen nagy darabját, az számomra igaznak tűnik.

Kíváncsi vagyok, milyen "hibát" lehet találni bennük. (Hogy a négyzetek a jpg-ben nem pontosan négyzetesre sikerültek, az, gondolom, nem számít ide)

Előzmény: [2216] sereva, 2019-11-19 22:51:34
[2218] sakkmath2019-11-21 01:56:56

Javallott tanulmányozni a GOOGLE (kép)találatait a "Fibonacci spirál" beírására.

Mindkét ábra hibája az, hogy a négyzetekbe rajzolandó Fibonacci spirál megszakad (a két ábrán más-más helyen), s így a Fibonacci számok sorrendjét már nem követi a két ábra. A két hiba úgy javítható, hogy a rossz helyekre került négyzeteket áthelyezzük a megfelelő helyekre.

1)

http://talaldki.com/wp-content/uploads/2017/11/Fibonacci3.jpg esetében a megoldás: A legnagyobb négyzetet kivágjuk és eltoljuk jobbra, vízszintesen, \(\displaystyle 55+34=89\) egységgel. Ebben az új helyzetben a 34 oldalhosszúságú négyzet jobb alsó sarkába érkező Fibonacci spirál már át tud lépni az áthelyezett legnagyobb négyzetbe.

2)

http://talaldki.com/wp-content/uploads/2018/08/Fibonacci6.jpg, erre pedig lásd az alábbi, kijavított ábrarészletet:

Előzmény: [2217] SmallPotato, 2019-11-21 00:24:37
[2219] sereva2019-11-21 08:02:28

Nagyon köszönöm a segítségeteket.

Előzmény: [2218] sakkmath, 2019-11-21 01:56:56
[2221] marcius82020-02-20 20:09:00

Van egy szabályos dobókockám, minden lapjára egyforma valószínűséggel esik. Kicsit huncut vagyok, és a 2-es oldalt átváltoztatom 5-ösre. Így a kockán lesz két 5-ös oldal, de nem lesz 2-es oldal. Addig dobok a kockával, amíg az 1, 3, 4, 5, 6 számok mindegyike előkerül. Mennyi lesz a dobások számának várható értéke?

[2222] Erben Péter2020-02-24 18:04:05

\(\displaystyle \frac{127}{10}\)

Előzmény: [2221] marcius8, 2020-02-20 20:09:00
[2223] marcius82020-02-24 18:55:55

Miért? Előre is köszönöm az indoklást vagy útmutatást.

Előzmény: [2222] Erben Péter, 2020-02-24 18:04:05
[2224] Erben Péter2020-02-24 19:02:49

A feladat a kupongyűjtő probléma azon esete, amikor a valószínűségek nem egyenlők.

A cinkelt dobókockával való dobás megfeleltethető egy kupon megvásárlásának. Tegyük fel, hogy \(\displaystyle n\) különböző ,,kupon'' létezik, amelyek \(\displaystyle p_1\), \(\displaystyle p_2\), ..., \(\displaystyle p_n\) valószínűséggel fordulnak elő (ahol \(\displaystyle p_1+\ldots+p_n=1\)). Célunk, hogy egy teljes kupon-gyűjteményt állítsunk össze, és kérdésünk, hogy várhatóan hány kupont kell ehhez megvennünk.

A konkrét feladatban \(\displaystyle n=5\), a valószínűségek pedig \(\displaystyle \frac{1}{6}\), \(\displaystyle \frac{1}{6}\), \(\displaystyle \frac{1}{6}\), \(\displaystyle \frac{1}{3}\), \(\displaystyle \frac{1}{6}\).

Az általános feladat megoldása megtalálható például Marco Ferrante és Monica Saltalamacchia The Coupon Collector’s Problem című írásában.

(Vázlatosan.) Jelentse az \(\displaystyle X_i\) valószínűségi változó azt, hogy hányadik húzásnál kaptuk meg először az \(\displaystyle i\) értéket. (Az egyszerűség kedvéért mostantól feltételezzük, hogy az 1,2,...,\(\displaystyle n\) értékek jöhetnek ki. Ez a feltételezés olvashatóbbá teszi az indexeket, és nem változat a feladat lényegén.)

A fenti jelöléssel a teljes gyűjteményt \(\displaystyle \max_{i\in \{1,\ldots,n\}} X_i\) lépésben állítjuk össze. Keressük \(\displaystyle \max X_i\) várható értékét.

Felhasználjuk a skatulya-elvhez analóg alábbi azonosságot:

\(\displaystyle \max_{i}\{x_i\} =\sum_{i=1}^n x_i - \sum_{i<j}\min\{x_i,x_j\} +\sum_{i<j<k}\min\{x_i,x_j,x_k\} - \cdots + \left(-1\right)^{n+1}\min\{x_1,\ldots,x_n\}, \)

továbbá a várható érték linearitását.

\(\displaystyle E[\max X_i] = \sum E[X_i] - \sum_{i<j} E[\min\{X_i, X_j\}] + \sum_{i<j<k} E[\min\{X_i,X_j,X_k\}] - \ldots \)

Vegyük még észre, hogy az \(\displaystyle X_i\), \(\displaystyle \min\{X_i,X_j\}\), \(\displaystyle \min\{X_i,X_j,X_k\}\), ...valószínűségi változók mind geometriai eloszlásúak, rendre \(\displaystyle p_i\), \(\displaystyle p_i+p_j\), \(\displaystyle p_i+p_j+p_k\), ...paraméterrel.

Például \(\displaystyle \min\{X_1, X_2\}\) azt jelenti, hogy mikor jött ki először egy kupon az \(\displaystyle \{1,2\}\) halmazból, vagyis mikor következett be először egy \(\displaystyle p_1+p_2\) valószínűségű esemény.

Mivel a \(\displaystyle p\) valószínűségű esemény első bekövetkezésének várható értéke \(\displaystyle \frac{1}{p}\), ezért a kupongyűjtő probléma megoldása:

\(\displaystyle E[\max X_i] = \sum_{i}\frac{1}{p_i}- \sum_{i<j}\frac{1}{p_i+p_j} + \sum_{i<j<k}\frac{1}{p_i+p_j+p_k}-\ldots+(-1)^{n+1}\frac{1}{p_1+\ldots+p_n} \)

A cinkelt kockára mondjuk \(\displaystyle p_1=p_2=p_3=p_4=\frac{1}{6}\) és \(\displaystyle p_5=\frac{1}{3}\). Alkalmazva a fenti formulát a keresett várható lépésszámra \(\displaystyle \frac{127}{10}\) jön ki.

Előzmény: [2223] marcius8, 2020-02-24 18:55:55
[2225] Erben Péter2020-02-24 19:28:03

Javítás: skatulya-elv -> szita formula

Előzmény: [2224] Erben Péter, 2020-02-24 19:02:49
[2226] marcius82020-02-24 19:28:48

megint tanultam valami újat. köszi. Egyébként ez egy bűvésztrükk matekos részéhez kellett. A trükk lényege, hogy ezzel a cinkelt kockával választok ki hat kártyából a második kártyát, mégpedig úgy hogy azt nem dobom ki a cinkelt kockával. Ha olyan lenne a cinkelt kocka, hogy rögtön és mindig 2-est hozza ki, na az gyanús lenne. De így nem az.

Előzmény: [2224] Erben Péter, 2020-02-24 19:02:49
[2227] jonas2020-02-25 14:16:57

Valóban várhatóan 127/10 = 12.7 dobás kell.

Közönséges 6 oldalú kockánál várhatóan \(\displaystyle 6/6 + 6/5 + 6/4 + 6/3 + 6/2 + 6/1 \) dobás kell, hogy mind a 6 oldal előjöjjön. Ha már öt oldalt kidobtunk, akkor a hatodik átlagosan 6 dobásból jön ki.

A huncut kockánál különböztessük meg továbbra is a hat oldalt egymástól. Várhatóan \(\displaystyle 6/6 + 6/5 + 6/4 + 6/3 + 6/2 \) dobás kell ahhoz, hogy öt oldal előjöjjön, és addig biztosan dobálni kell a kockát. Ekkor a kocka minden oldalára egyformán 1/6 a valószínűsége, hogy pont az az oldal nem fordult még elő. 2/6 valószínűséggel tehát ez az oldal valamelyik 5 pontos oldal: ebben az esetben már öt szám előjött, és nem kell tovább dobnunk. 4/6 valószínűséggel valami más a kimaradó oldal, mert már mindkét ötös oldalt láttuk: ekkor tovább kell dobni, amíg a kimaradó egy oldal is előjön, vagyis átlagosan még \(\displaystyle 6/1 \) dobásig. Ez összesen átlagosan \(\displaystyle 6/6 + 6/5 + 6/4 + 6/3 + 6/2 + 4/6\cdot6/1 \) dobás, ez pedig \(\displaystyle 127/10 \).

[2228] Erben Péter2020-02-25 17:52:37

Igen, ez egy sokkal emészthetőbb megközelítés, amikor majdnem mindegyik valószínűség egyenlő.

Előzmény: [2227] jonas, 2020-02-25 14:16:57
[2229] Fálesz Mihály2020-02-26 11:00:58

A [2224]-beli képletnek van egy vicces átírása integrálokkal:

\(\displaystyle \sum_i\frac1{p_i}-\sum_{i<j}\frac1{p_i+p_j}+\sum_{i<j<k}\frac1{p_i+p_j+p_k}-+\ldots+(-1)^{n-1}\frac1{p_1+\ldots+p_n} = \)

\(\displaystyle = \int_0^1 \left( \sum_i x^{p_i-1} -\sum_{i<j} x^{p_i+p_j-1} +\sum_{i<j<k} x^{p_i+p_j+p_k-1} -+\ldots+(-1)^{n-1}x^{p_1+\ldots+p_n-1} \right)\mathrm{d}x = \)

\(\displaystyle = \int_0^1 \left(1-\prod_{i=1}^n(1-x^{p_i})\right) \frac{\mathrm{d}x}{x}. \)

Ha \(\displaystyle p_1=\ldots=p_n=\frac1n\), akkor az \(\displaystyle x=(1-y)^n\) helyettesítéssel

\(\displaystyle \ldots = n\int_0^1 \frac{1-y^n}{1-y} \mathrm{d}y = n\int_0^1\big(1+y+y^2+\ldots+y^{n-1}\big) \mathrm{d}y = n\bigg(1+\frac12+\frac13+\ldots+\frac1n\bigg). \)

Ha csak \(\displaystyle n-1\) valószínűség van, \(\displaystyle p_1=\ldots=p_{n-2}=\frac1n\) és \(\displaystyle p_{n-1}=\frac2n\), akkor, ugyanazzal a helyettesítéssel

\(\displaystyle ... = n\int_0^1 \frac{\big(1-y^{n-2}(2y-y^2)\big)}{1-y} \mathrm{d}y = n\int_0^1\big(1+y+y^2+\ldots+y^{n-2}-y^{n-1}\big) \mathrm{d}y = \)

\(\displaystyle = n\bigg(1+\frac12+\frac13+\ldots+\frac1{n-1}-\frac1n\bigg). \)

Ebből is leolvasható, hogy a különbség éppen \(\displaystyle 2\).

(jonas [2227]-ből is látszik, egyszerűbben és kevésbé ijesztően.)

Előzmény: [2228] Erben Péter, 2020-02-25 17:52:37
[2230] Erben Péter2020-02-28 09:46:35

Meglepő és szép ez az integrálos átírás. Ha jól látom, két kevésbé közismert összegzési formula is kijön belőle, ha az eredeti szummás alakba behelyettesítjük az \(\displaystyle \frac{1}{n}\) és \(\displaystyle \frac{2}{n}\) valószínűségeket.

Amikor minden valószínűség egyenlő:

\(\displaystyle E = \sum _{k=1}^{n} (-1)^{k+1} \binom{n}{k} \cdot \frac{n}{k} = n\cdot\left(1+\frac{1}{2}+\frac{1}{3}+\dots +\frac{1}{n}\right)\)

Innen:

\(\displaystyle \sum _{k=1}^{n} (-1)^{k+1} \binom{n}{k} \cdot \frac{1}{k} = 1+\frac{1}{2}+\frac{1}{3}+\dots +\frac{1}{n}\)

A második esetben pedig két részre bontható az összeg. Az első rész megfelel az előző esetnek (\(\displaystyle n-2\) taggal), így a második tagok összegére kapunk összefüggést.

\(\displaystyle E = \sum _{k=1}^{n} (-1)^{k+1} \left(\binom{n-2}{k} \cdot \frac{n}{k} + \binom{n-2}{k-1} \cdot \frac{n}{k+1}\right)= n\cdot\left(1+\frac{1}{2}+\frac{1}{3}+\dots+\frac{1}{n-1} - \frac{1}{n}\right)\)

Áttérve \(\displaystyle n-2\)-ről \(\displaystyle n\)-re és a zárójelek első tagjait a korábbi képlettel összegezve innen azt kapjuk, hogy

\(\displaystyle \sum _{k=0}^{n} (-1)^{k} \binom{n}{k} \cdot \frac{1}{k+2}= \frac{1}{n+1} - \frac{1}{n+2}\)

Előzmény: [2229] Fálesz Mihály, 2020-02-26 11:00:58
[2231] nadorp2020-02-29 23:30:51

Ha már integráltunk,akkor deriváljunk is. Az alábbi megoldás egy kicsit számolósab ("ijesztőbb" :-), direktben megadja az \(\displaystyle X=\max_iX_i\) valószínűségi változó eloszlását és ennek generátorfüggvénye alapján számoljuk a várható értéket.

Szükség lesz az \(\displaystyle f(x)=\prod_{i=1}^{n}(e^{p_ix}-1)\) függvény alábbi tulajdonságaira:

\(\displaystyle f{'}(x)-f(x)=\sum_{i=1}^np_i\prod_{j\neq i}(e^{p_jx}-1)\tag1\)

Ha f(x) Taylor-sora \(\displaystyle f(x)=\sum_{k=0}^\infty a_kx^k\), akkor mivel 0 n-szeres gyöke f-nek

\(\displaystyle a_0=...=a_{n-1}=0 \tag2\)

\(\displaystyle f{'}(x)-f(x)=\sum_{k=n}^\infty(ka_{k}-a_{k-1})x^{k-1} \tag3\)

Legyen \(\displaystyle q_k=P(X=k)\). Ekkor nyilván \(\displaystyle q_0=...=q_{n-1}=0\) továbbá a \(\displaystyle G(x)=\sum_{k=n}^\infty q_kx^k\) generátorfüggvény felhasználásával \(\displaystyle E(X)=G{'}(1)\), így elég G'(1) értékét meghatározni.

Ha X=k és utoljára az i értéket húztuk, továbbá a többi j érték \(\displaystyle x_j\)-szer fordult elő (\(\displaystyle x_j\geq1,j\neq i\)), akkor ez az esemény \(\displaystyle \frac{(k-1)!}{\prod{x_j!}}\) esetben fordul elő és minden előfordulás valószínűsége \(\displaystyle p_i\prod p_j^{x_j}\) Tehát

\(\displaystyle q_k=\sum_{i=1}^{n} \sum_{\begin{matrix} \sum x_j=k-1\\ j\neq i\\ x_j\geq1 \end{matrix}} p_i\prod p_j^{x_j}\frac{(k-1)!}{\prod {x_j!}}=(k-1)!\sum_{i=1}^{n}p_i \sum_{\begin{matrix} \sum x_j=k-1\\ j\neq i\\ x_j\geq1 \end{matrix}} \prod\frac{p_j^{x_j}}{{x_j!}}\)

Látható, hogy \(\displaystyle \frac{q_k}{(k-1)!}\) értéke megegyezik az (1) jobb oldalán szereplő függvény Taylor-sorában az \(\displaystyle x^{k-1}\) tag együtthatójával, így (3) szerint

\(\displaystyle q_k=(k-1)!(ka_k-a_{k-1})=k!a_k-(k-1)!a_{k-1}=f^{(k)}(0)-f^{(k-1)}(0) \tag4\)

Ha \(\displaystyle F(x)=\sum_{k=n}^\infty f^{(k)}(0)x^k\) (a definíció érvényes |x|<1 esetben, hiszen \(\displaystyle \lim_{k\to\infty} f^{(k)}(0)=\sum q_k=1\)), akkor (4) alapján \(\displaystyle G(x)=F(x)(1-x)\). De \(\displaystyle f^{(k)}(0)\) könnyen számolható, ha f(x) definíciójában elvégezzük a tagonkénti szorzást.

Legyen \(\displaystyle S_i\) a \(\displaystyle \{p_1,...,p_n\}\) halmaz i elemű részhalmazainak a halmaza és tetszőleges \(\displaystyle S\in S_i\) esetén legyen \(\displaystyle |S|=\sum_{p_i\in S}p_i\). Ekkor \(\displaystyle k\geq1\) esetén

\(\displaystyle f^{(k)}(0)=1-\sum_{S\in S_{n-1}}|S|^k+ \sum_{S\in S_{n-2}}|S|^k-...+(-1)^{n-1}\sum_{S\in S_1}|S|^k=1+\sum_{i=1}^{n-1}(-1)^{n-i}\sum_{S\in S_i}|S|^k \tag5\)

Felhasználva, hogy (5)-ben mindenhol |S|<1, F(x) hatványsorában |S|x hányadosú mértani sorokat kell összegeznünk, így

\(\displaystyle F(x)=\frac{x^n}{1-x}+\sum_{i=1}^{n-1}(-1)^{n-i}\sum_{S\in S_i}\frac{|S|^nx^n}{1-|S|x}\)

\(\displaystyle G(x)=x^n+(1-x)\sum_{i=1}^{n-1}(-1)^{n-i}\sum_{S\in S_i}\frac{|S|^nx^n}{1-|S|x}\)

\(\displaystyle E(X)=G{'}(1)=n-\sum_{i=1}^{n-1}(-1)^{n-i}\sum_{S\in S_i}\frac{|S|^n}{1-|S|}=n-\sum_{i=1}^{n-1}(-1)^{n-i}\sum_{S\in S_i}\left(\frac{|S|^n-1}{1-|S|}+\frac1{1-|S|}\right)\)

Felhasználva, hogy ha \(\displaystyle S\in S_i\), akkor egyértelműen megfeleltethető neki egy olyan \(\displaystyle S'\in S_{n-i}\), hogy 1-|S|=|S'|, kapjuk

\(\displaystyle E(X)=n-\sum_{i=1}^{n-1}(-1)^{n-i}\sum_{S\in S_i}\frac{|S|^n-1}{1-|S|}-\sum_{i=1}^{n-1}(-1)^{n-i}\sum_{S\in S_{n-i}}\frac1{|S|}\)

\(\displaystyle E(X)=n+\sum_{i=1}^{n-1}(-1)^{n-i}\sum_{S\in S_i}(|S|^{n-1}+|S|^{n-2}+...+1)+\sum_{i=1}^{n-1}(-1)^{i+1}\sum_{S\in S_i}\frac1{|S|} \tag6\)

Alkalmazzuk most (5)-öt a k=1,2,...n-1 esetben és adjuk össze az egyenlőségeket. Mivel most \(\displaystyle f^{(k)}(0)=0\), kapjuk

\(\displaystyle 0=\sum_{k=1}^{n-1}f^{(k)}(0)=n-1+\sum_{i=1}^{n-1}(-1)^{n-i}\sum_{S\in S_i}(|S|^{n-1}+|S|^{n-2}+...+|S|)\)

Ebből azonnal következik, hogy (6)-ban

\(\displaystyle n+\sum_{i=1}^{n-1}(-1)^{n-i}\sum_{S\in S_i}(|S|^{n-1}+|S|^{n-2}+...+1)=1+\sum_{i=1}^{n-1}(-1)^{n-i}\sum_{S\in S_i}1=1+\sum_{i=1}^{n-1}(-1)^{n-i}\binom{n}{i}=(-1)^{n+1}\)

Tehát

\(\displaystyle E(X)=(-1)^{n+1}+\sum_{i=1}^{n-1}(-1)^{i+1}\sum_{S\in S_i}\frac1{|S|}=\sum_{i=1}^{n}(-1)^{i+1}\sum_{S\in S_i}\frac1{|S|}\)

Előzmény: [2230] Erben Péter, 2020-02-28 09:46:35
[2232] jsmit6542020-03-15 12:19:06

\(\displaystyle f_0(x)=|x|, f_n(x)=|f_{n-1}(x)-1|, f_{22221}(22221.1)=?\)

[2234] marcius82020-03-23 22:00:57

Útmutatás: Ha ábrázolod az \(\displaystyle f_0(x)\), \(\displaystyle f_1(x)\), \(\displaystyle f_2(x)\), \(\displaystyle f_3(x)\), \(\displaystyle f_4(x)\), \(\displaystyle f_5(x)\), ..... függvényeket, észreveszed, hogy a grafikonok milyen szabályosság szerint követik egymást.

Előzmény: [2232] jsmit654, 2020-03-15 12:19:06

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]