Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?
A LapKiadványok

Tanári különszámok, 2021. augusztus

Szerk

Matematika-informatika tanári különszám (PDF) Fizika-informatika tanári különszám (PDF)
A LapLegfrissebb szám

A KöMaL 2025. decemberi száma

A LapLegfrissebb szám

A KöMaL 2026. januári száma

A LapLegfrissebb szám

A KöMaL 2026. februári száma

A LapLegfrissebb szám

A KöMaL 2025. novemberi száma

A LapKiadványok

Emelt szintű érettségi matematikából – 24 válogatott gyakorló feladatsor megoldással

Jelen kötetünk 24 olyan feladatsorból áll, amelyek 2007 és 2017 között jelentek meg a KöMaL-ban. A feladatsorok összeállítói gyakorló tanárok, szakértők, vezető tanárok, tankönyvszerzők:

PontversenyVersenykiírás

Versenykiírás a KöMaL 2025–2026. évi pontversenyeire

Azok is figyelmesen olvassák el a Versenykiírást, akik tavaly már részt vettek versenyünkben.

Idén is matematikából, fizikából és informatikából indítunk versenyeket. Egyénileg, illetve csapatban is lehet versenyezni, a versenyek 9 hónapon keresztül, 2025. szeptemberétől 2026. június elejéig tartanak. Minden hónapban új feladatokat tűzünk ki, és a megoldásokat a következő hónap elejéig küldheted be. A verseny végeredményét a 2026. szeptemberi számunkban hirdetjük ki. A díjakat jövő ősszel, a KöMaL Ifjúsági Ankéton adjuk át.

MatfundTámogatás

Kérjük, támogassa adója 1%-ával a KöMaL-t!

A KöMaL kiadásának, a versenyek teljes lebonyolításának, díjazásának és a díjkiosztóval egybekötött Ifjúsági Ankétok szervezésének költségeit 2007 óta a MATFUND Középiskolai Matematikai és Fizikai Alapítvány fizeti.

Kérjük, személyi jövedelemadója 1%-ának felajánlásával álljon a több, mint 125 éve alapított Középiskolai Matematikai és Fizikai Lapok mellé!

MatematikaRejtvények, ördöglakatok

Rejtvények, ördöglakatok: A Hanoi tornyai feladvány gráfja

A Hanoi tornyai egy olyan feladvány, amelyben három függőleges pálcán van \(\displaystyle n\) db, különböző külső átmérőjű lyukas korong [2]. A hagyományos kiindulási állapotban a bal szélső pálcán van az összes korong, fentről lefelé növekvő méretben, a célállapot pedig ugyanez a korongpiramis, csak a jobb szélső pálcán. Két egyszerű szabályt kell betartani: minden lépésben valamelyik pálca legfelső korongját tehetjük egy másik pálca tetejére, továbbá semelyik korongot sem szabad nála kisebb korongra tenni. Igazolható, hogy a szükséges lépésszám \(\displaystyle 2^n - 1\), azaz minden egyes korong hozzáadásával lényegében megduplázódik.

🔒 MatematikaRejtvények, ördöglakatok

Rejtvények, ördöglakatok – O'Beirne olvasztótégelye

Nem kell túl sokáig keresgélnünk az interneten a fejtörő feladatok között ahhoz, hogy sík vagy tér kitöltésére vonatkozó feladványra bukkanjunk. Ezek egyik fajtája az, amikor néhány síkidom vagy test valamilyen keretben van elhelyezve úgy, hogy látszólag teljesen kitöltik azt, de van még külön egy további eleme a játéknak.

🔒 MatematikaRejtvények, ördöglakatok

Rejtvények, ördöglakatok: Színdominóktól a Wang csempékig

Ha egy négyzetet a két átlójával felosztunk négy háromszögre, majd ezeket kiszínezzük három színnel az összes lehetséges módon, akkor megkapjuk a négyzetes színdominókat.

A színdominókat először a múlt század elején írta le Percy Alexander MacMahon, a kalandos életű matematikus. Ő rögtön megadott több nehéz feladatot is hozzájuk.

MatematikaCikk

Tait tétele és a 3-reguláris gráfok – a B. 5403. feladat háttere

A KöMaL 2022 őszi számaiban Tóthmérész Lilla egy alapos cikksorozatot ([1]) közölt a négyszín-sejtés történetéről, benne kiemelten Alfred Kempe 1879-ben közölt bizonyítási kísérletéről, amelyben Heawood 1890-ben találta csak meg a hibát. A cikkben leírtakat érdemes kiegészíteni azzal, hogy 1880-ban egy másik, rendkívül érdekes bizonyítási kísérlet is történt. Egy Peter Guthrie Tait nevű skót matematikus ugyanis a következő szép állítást bizonyította, mindössze 1 évvel Kempe kísérlete után ...

MatematikaRejtvények, ördöglakatok

Rejtvények, ördöglakatok: Szoliterek megoldása

Az egyik legrégebben ismert egyszemélyes logikai játék a szoliter. Már a Napkirály udvarában játszottak vele, kicsit később pedig Leibniz is elismerően nyilatkozott róla. Egy lépésben egy szomszédos bábut kell átugrani. Ezt csak akkor lehet megtenni, ha mögötte üres hely található. Ugrani vízszintesen vagy függőlegesen szabad, de átlósan nem. Az átugrott bábut azonnal le kell venni.

Pusztán a szabályok ismeretében a feladat szinte megoldhatatlanul nehéz. Már az is szép eredmény, ha sikerül elérni, hogy csak 3-4 bábu maradjon a táblán.