Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?

A P. 5652. fizika feladat megoldása

Szerk

P. 5652. Egy \(\displaystyle H\) magasságú toronyból \(\displaystyle \alpha\) szög alatt felfelé eldobunk egy követ. A becsapódás előtt a kő sebességvektora \(\displaystyle \beta\) szöget zár be a vízszintessel. A  toronytól milyen messze csapódott be a kő? A közegellenállást hanyagoljuk el.

(4 pont)

KVANT feladat

Megoldás. Jelölje a kő sebességének (állandó) vízszintes komponensét \(\displaystyle v_x\). A becsapódás és a torony keresett távolsága \(\displaystyle d\), a repülési idő \(\displaystyle t\). A nulla szintet válasszuk a torony aljánál, függőleges irányban vegyük a lefele irányt pozitívnak, valamint használjuk az eldobás pillanatához a \(\displaystyle 0\) és a becsapódás pillanatánál az \(\displaystyle 1\) indexet.

Az eldobás utáni pillanatban a függőleges sebesség \(\displaystyle v_{y0}=-v_x\tg\alpha\), a becsapódáskor \(\displaystyle v_{y1}=v_x\tg\beta\), a függőleges gyorsulás \(\displaystyle g\), ebből a repülési idő:

\(\displaystyle (1) \)\(\displaystyle t=\frac{v_x(\tg\beta+\tg\alpha)}{g}.\)

Írjuk fel az energiamegmaradást:

$$\begin{gather*} \frac{1}{2}mv_0^2+mgH=\frac{1}{2}mv_1^2,\\ v_x^2(1+\tg^2\alpha)+2gH=v_x^2(1+\tg^2\beta),\\ 2gH=v_x^2(\tg^2\beta-\tg^2\alpha),\\ 2H=v_x\frac{v_x(\tg\beta+\tg\alpha)}{g}(\tg\beta-\tg\alpha). \end{gather*}$$

(1) behelyettesítésével és \(\displaystyle d=v_xt\) felhasználásával ebből a keresett távolság:

\(\displaystyle d=\frac{2H}{\tg\beta-\tg\alpha}. \)

Gyenes Károly (Kecskeméti Bányai Júlia Gimn., 11. évf.)

Megjegyzések. 1. A megoldásunk alapján:

\(\displaystyle v_x=\sqrt{\frac{2gH}{\tg^2\beta-\tg^2\alpha}}, \)

és ebből a mozgáshoz szükséges kezdősebesség:

\(\displaystyle v_0=\frac{v_x}{\cos\alpha}=\frac{1}{\cos\alpha}\sqrt{\frac{2gH}{\tg^2\beta-\tg^2\alpha}}=\sqrt{\frac{2gH}{\tg^2\beta\cos^2\alpha-\sin^2\alpha}}. \)

2. Ha \(\displaystyle H>0\) (azaz valóban egy toronyból és nem egy gödörből dobtuk el a követ), akkor csak \(\displaystyle \beta>\alpha\) esetben kapunk pozitív távolságot. Ez érthető, hiszen amikor a kő már lefelé haladva eléri a \(\displaystyle H\) magasságot, akkor vízszintessel bezárt szöge éppen \(\displaystyle \alpha\), és ezután egyre meredekebb szögben esik, tehát valóban \(\displaystyle \beta>\alpha\).

\(\displaystyle \beta=\alpha\) estében \(\displaystyle d\to\infty\), ehhez azonban \(\displaystyle v_0\to\infty\) kezdősebesség kellene. Ez is érthető: nagyon nagy távolság esetében \(\displaystyle H\) elhanyagolható a pálya magasságához képest, a mozgás olyan, mintha a talajról dobnánk el a követ, amikor is valóban \(\displaystyle \beta=\alpha\).

33 dolgozat érkezett. Helyes 17 megoldás. Kicsit hiányos (3 pont) 5, hiányos (1–2 pont) 9, hibás 2 dolgozat.